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Spectral Statistics of Random d-regular Graphs

Abstract

In this thesis we study the uniform random d-regular graphs on N vertices from a

random matrix theory point of view.

In the first part of this thesis, we focus on uniform random d-regular graphs with

large but fixed degree. In the bulk of the spectrum down to the optimal spectral scale,

we prove that the Green’s functions can be approximated by those of certain infinite

tree-like (few cycles) graphs that depend only on the local structure of the original

graphs. This result implies that the Kesten–McKay law holds for the empirical

eigenvalue density down to the smallest scale and the bulk eigenvectors are completely

delocalized. Our method is based on estimating the Green’s function of the adjacency

matrices and a resampling of the boundary edges of large balls in the graphs.

In the second part of this thesis, we prove, for 1 ⌧ d ⌧ N2/3, in the bulk of

the spectrum the local eigenvalue correlation functions and the distribution of the

gaps between consecutive eigenvalues coincide with those of the Gaussian orthogonal

ensemble. In order to show this, we interpolate between the adjacent matrices of

random d-regular graphs and the Gaussian orthogonal ensemble using a constrained

version of Dyson Brownian motion.



iv

Contents

Acknowledgements vi

1. Introduction 1

1.1. Main results I: Spectral density and eigenvector delocalization 3

1.2. Main results II: Bulk Universality 7

1.3. Related results 10

2. Geometry of Random d-regular graphs 12

2.1. Graphs 12

2.2. Structure of random and deterministic regular graphs 14

2.3. Tree extension 16

3. Spectral Density and Eigenvectors 27

3.1. Proof outline and main ideas 29

3.2. Initial estimates 35

3.3. Local resampling by switching 39

3.4. The Green’s function distance and switching cells 62

3.5. Stability under removal of a neighborhood 67

3.6. Stability under switching 78

3.7. Improved decay in the switched graph 97

3.8. Stability estimate for the switched graph 108

3.9. Concentration in the switched graph 122

3.10. Improved approximation in the switched graph 133

3.11. Proof of main results 139

4. Bulk Universality 152

4.1. Strategy of proof 152

4.2. Switchings and short-time comparision 158

4.3. Stability of eigenvectors and eigenvalues 174

4.4. Proof of Propositions 4.6–4.7 180



v

Appendix A. Combinatorial estimates for random regular graphs 193

A.1. Proof of Proposition 2.1 193

A.2. Proof of Proposition 2.2 194

A.3. Proof of Lemma 3.35 199

Appendix B. Properties of the Green’s functions 201

B.1. Resolvent identity 202

B.2. Schur complement formula 202

B.3. Ward identity 203

B.4. Covering map 203

References 205



vi

Acknowledgements

First of all, I would like to thank my advisor, Professor Horng-Tzer Yau. Working

with him was a great learning experience in all aspects of my research, and he was

also a constant source of advices and encouragements all through my time at Harvard.

I would also like to thank professors Alice Guionnet and Jelani Nelson for agreeing

to be my defense committee members, and also for the numerous things I learned

from them over the past years. I would especially thank Professor Alice Guionnet

for inviting me to visit Lyon, sparing a lot of her time on academic discussions and

giving advices on various issues since I was an undergraduate.

Throughout my years at Harvard, I have had benefit from discussing mathematics

with Professors Alexei Borodin, Vadim Gorin, Elchanan Mossel, Nike Sun and Jun

Yin. They have been particularly kind to me on many occasions, answering my

various silly questions and generously sharing with me their ideas.

I am lucky to work with many talented people during my PhD, especially Arka Ad-

hikari, Roland Bauerschmidt, Paul Bourgade, Kenji Kawaguchi, Antti Knowles and

Benjamin Landon. Doing research with them was edifying, and I am grateful for the

chance. I also want to thank everyone at Harvard probability group: Amol Aggar-

wal, Christian Brennecke, Ziliang Che, Aukosh Jagannath, Marius Lemm, Patrick

Lopatto, Kyle Luh, Yixiang Mao, Jake Marcinek, Vu Lan Nguyen, Yuchen Pei,

Philippe Sosoe and Qiang Zeng. Discussing with them was amazing, full of fun

and surprises.

I was also very lucky to have some very good friends at Harvard, from whom I

learned about life as much as I did with mathematics. Special thanks to Dennis

Tseng, for a friendship that has lasted for eight years. Besides that, I thank all the

other professors and sta↵ in this wonderful department.



vii

Finally I want to thank my parents and brother. They have been tremendously

helpful throughout my life. I have no doubt that without their constant support I

would not be where I am today.



1

1. Introduction

Random d-regular graphs are fundamental models of sparse random graphs and

they arise naturally in many di↵erent contexts. The spectral properties of their

adjacency matrices are of particular interest in computer science, combinatorics, and

statistical physics. The relevant topics include the theory of expanders (see e.g. [80]),

quantum chaos (see e.g. [82]), error-correcting codes (see e.g. [81, 84]) and graph

⇣-functions (see e.g. [88]).

For a (uniform) random d-regular graph G on N vertices, we denote its adjacency

matrix by A = A(G). Thus A is uniformly chosen among all symmetric N ⇥ N

matrices with entries in {0, 1} with
P

j Aij = d and Aii = 0 for all i. Note that

A has the trivial constant eigenvector with eigenvalue d. We also use the rescaled

adjacency matrix H = A/
p
d� 1, and we denote the set of (simple) d-regular graphs

on N vertices by GN,d. In this thesis we study the spectral properties of uniform

random d-regular graphs on N vertices, i.e. the eigenvalues and eigenvectors of H,

from a random matrix theory point of view.

For random matrices of Wigner type, their spectral properties were extensively

studied in the past twenty years. Precise estimates on the eigenvalues and eigenvec-

tors of these matrices were well-understood (see e.g., [42, 86, 63, 36]):

(i) The empirical eigenvalue density is given by the semicircle law ⇢sc(x) =
p

[4� x2]+/(2⇡) on all scales larger than N�1.

(ii) The normalized eigenvectors are uniformly bounded in `1-norm by N�1/2

(up to logarithmic correction).

(iii) The extremal eigenvalues are concentrated on scale N�2/3.

(iv) Both bulk and edge universality holds; in particular, the distributions of the

extremal eigenvalues are the same as those of Gaussian matrix ensembles

(Tracy–Widom distributions).
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The first three properties usually can be proved via estimates on the Green’s func-

tion; the proofs of universality involve Dyson Brownian Motion or other comparison

methods (see [36] for a review).

There are two major di↵erences between Wigner type random matrices and the

adjacency matrices of random d-regular graphs. Firstly, the entries of the adjacency

matrices of random d-regular graphs are not independent. The entries have long

range correlations, because of the restriction that the row sums and column sums

are d. Secondly, for sparse random d-regular graphs, i.e. d ⌧ N , there is not much

randomness. Because there are only d nonzero entries in each row and column in

the adjacency matrices. However, extensive simulations indicate that (i)-(iv) hold for

random regular graphs even with fixed degrees [75, 54, 76, 50].

For random d-regular graphs with growing degrees, i.e. d 2 [⇠4, N2/3⇠�2/3], proper-

ties (i), (ii), were proved in [19]. One main result of this thesis is to show the bulk uni-

versality in (iv) holds for random d-regular graphs in the regime d 2 [No(1), N2/3�o(1)].

In order to show this, we interpolate between the adjacency matrices of random d-

regular graphs and the Gaussian orthogonal ensemble using a constrained version of

Dyson Brownian motion.

For random d-regular graphs with fixed degree, previous results generally concern

properties of eigenvalues and eigenvectors near the macroscopic scale. Weak versions

of (i) and (ii) were proved in [33]: the empirical eigenvalue density is given by the

Kesten–McKay law, d
d2�x2

1
2⇡

p

[4(d� 1)� x2]+ on the spectral scales (logN)�⌦(1);

normalized eigenvectors are uniformly bounded in `1-norm by (logN)�⌦(1). A weak

version of (iii) that for any fixed " > 0, the nontrivial eigenvalues of A are contained

in [�2
p
d� 1�", 2

p
d� 1+"] was conjectured in [13] and proved in [46]; see also [21]

for recent alternative arguments. It was also shown that the scale " can actually be

taken to be ⌦((logN)/ log logN) in [21]. Another main accomplishment of this thesis

is the proof that the Kesten–McKay law holds for the empirical eigenvalue density
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down to the smallest scale and the bulk eigenvectors are completely delocalized, i.e.

(i) and (ii) hold, provided d is larger than certain constant. For this, we introduce

an approach that allows the tools developed from random matrix theory to make use

of the local geometry of random regular graphs, while it also captures key random

matrix behavior.

Notation. For two quantities X and Y depending on N , we use the notations X =

O6(Y ) if Y is positive and |X| 6 Y ; X = O(Y ) if X, Y are positive and there

exists some universal constant C such that X 6 CY ; X = o(Y ), X ⌧ Y or

Y � X if Y is positive and limN!1 X/Y = 0; X = ⌦(Y ) if X, Y are positive

and lim infN!1 X/Y > 0. We write [[a, b]] = [a, b] \ Z and [[N ]] = [[1, N ]].

1.1. Main results I: Spectral density and eigenvector delocalization. In the

first part of this thesis, we consider random regular graphs of large but fixed degree d.

We prove that the Kesten–McKay law holds for the empirical eigenvalue density down

to the smallest scale and the bulk eigenvectors are completely delocalized.

It is well known that most regular graphs of a fixed degree d > 3 are locally tree-like

in the sense that: (i) for any fixed radius R (and actually for R = ⌦(logd�1 N)), the

radius-R neighborhoods of almost all vertices are the same as those in the infinite d-

regular tree; (ii) the R-neighborhoods of all vertices have bounded excess, which is the

smallest number of edges that must be removed to yield a tree; see e.g. Proposition 2.1

below. The tree-like structure is important for the following results, valid in general

for deterministic graphs and in some cases requiring randomness as well.

(i) For regular graphs with locally tree-like structure, the macroscopic spec-

tral density of A converges to the Kesten–McKay law [59, 70], characterized

by the density d
d2�x2

1
2⇡

p

[4(d� 1)� x2]+. For random regular graphs, the

Kesten–McKay law was established on spectral scales (logN)�⌦(1) [33, 48, 15]

by using the fact that the locally tree-like structure holds with high proba-

bility in neighborhoods of radius ⌦(logd�1 N).
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(ii) For regular graphs with locally tree-like structure, the eigenvectors v of A are

weakly delocalized: their entries are uniformly bounded by (logN)�⌦(1)kvk2
[33, 48, 26] and their `2-mass cannot concentrate on a small set [26]. If, in

addition, the graphs are expanders, the eigenvectors of A also satisfy the

quantum ergodicity property [15, 25, 14].

(iii) For random regular graphs using the locally tree-like structure as important

input, for any fixed " > 0, the nontrivial eigenvalues of A are contained in

[�2
p
d� 1�", 2

p
d� 1+"]. This was conjectured in [13] and proved in [46];

see also [78, 21] for recent alternative arguments. It was also shown that the

scale " can actually be taken to be ⌦((logN)/ log logN) in [21].

To take advantage of both the local tree-like structure and the random matrix-like

structure, we use switchings to resample the boundaries of large balls (see Section 3.3).

This operation preserves the local tree-like structure and it also captures su�cient

global structure in random regular graphs. This resampling generalizes and adds a

geometric component to the local resampling method introduced in [19] for random

regular graphs with d � logN . The idea of using some form of switchings in studying

random regular graphs goes back at least to [71], where it was used in the enumeration

of such graphs; see also [92] for further applications in enumeration. Finally, to

analyze the propagation of the boundary e↵ect to the interior of the ball in the

Green’s function, we explicitly compute the Green’s function of the tree-like graphs.

1.1.1. Spectral density. With high probability, the spectral measure of the rescaled

adjacency matrix H = A/
p
d� 1 converges weakly to the rescaled Kesten–McKay

law with density given by

⇢d(x) =

✓

1 +
1

d� 1
� x2

d

◆�1
p

[4� x2]+
2⇡

.(1.1)

This convergence can be expressed asm(z) = md(z)+o(1) for any z 2 C+ independent

of N , where md(z) is the Stieltjes transform of ⇢d, and m(z) is the Stieltjes transform
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of the empirical spectral measure of H,

(1.2) md(z) =

Z

1

�� z
⇢d(�) d�, m(z) =

1

N

N
X

j=1

1

�j � z
,

and C+ = {z 2 C : Im[z] > 0} is the upper half-plane. The imaginary part of the

spectral parameter z 2 C+ determines the scale of the convergence. In particular,

the convergence m(z) ! md(z) for all fixed z corresponds to the convergence on the

macroscopic scale, i.e., for intervals containing order N eigenvalues. The following

theorem gives the convergence on the optimal mesoscopic scale Im[z] � 1/N , away

from the spectral edges at ±2.

Theorem 1.1 (Local Kesten–McKay Law). Fix ↵ > 4, ! > 8 and
p
d� 1 > (! +

1)22!+45. Then with probability 1� o(N�!+8) with respect to the uniform measure on

GN,d,

(1.3) |m(z)�md(z)| = O(logN)�↵

uniformly for

(1.4) z 2 D :=
�

z 2 C+ : Im[z] > (logN)48↵+1/N, |z ± 2| > (logN)�↵/2+1
 

.

While Theorem 1.1 shows that the spectral density (or its Stieltjes transform,

which is the trace of the Green’s function) does concentrate, the individual entries

of the Green’s function of the random regular graph with bounded degree do not

concentrate; see also Remark 3.2 below. This is di↵erent from the typical examples

in random matrix theory, and it is one of the reasons that the fixed degree graphs

require a more delicate analysis. For example, the random regular graph contains a

triangle with probability uniformly bounded from below. For graphs with bounded

degree, triangles and other short cycles have a strong local influence on the elements

of the Green’s function, and thus the spectrum.
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+1�1

0

+1�1

0

0

Figure 1. Theorem 1.2 shows that a random d-regular graph has only
completely delocalized eigenvectors with probability 1�o(N�!+8). On
the other hand, it is not di�cult to show that a random d-regular graph
has localized eigenvectors with probability ⌦(N�d+2). For example, a
random 3-regular graph contains the subgraph shown on the left with
probability ⌦(N�1). For comparison, also notice that an Erdős–Rényi
graph with finite average degree contains localized eigenvectors with
probability ⌦(1); see the right figure.

1.1.2. Eigenvectors. The following theorem states that the eigenvectors in the bulk

of the spectrum are completely delocalized.

Theorem 1.2 (Eigenvector delocalization). Fix ↵ > 4, ! > 8 and
p
d� 1 > (! +

1)22!+45. Then, with probability 1 � o(N�!+8) with respect to the uniform measure

on GN,d, the eigenvectors v of H whose eigenvalue � obeys |�± 2| > (logN)1�↵/2 are

simultaneously delocalized:

(1.5) kvk1 6
p
2(logN)24↵+1/2

p
N

kvk2.

Theorem 1.2 shows that with probability 1� o(N�!+8), the eigenvectors are com-

pletely delocalized. On the other hand, it is easy to see that, with probability

⌦(N�d+2), the random d-regular graph has a localized eigenvector (see Figure 1).

In particular, (1.5) cannot hold with probability higher than polynomial in 1/N .

Moreover, the Erdős–Rényi graph with finite average degree d has localized eigenvec-

tors with probability ⌦(1). Thus (1.5) with probability tending to 0 is false for the

Erdős–Rényi graph with finite average degree d.
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The delocalization of eigenvectors of (random and deterministic) regular graphs

has been studied in [90, 33, 48, 15, 64, 26, 25, 14] (see also [77] for a survey of results

on eigenvector delocalization in random matrices). Our result implies the optimal

bound of order 1/
p
N (up to logarithmic corrections) on the `1-norms of the (bulk)

eigenvectors of random regular graphs.

For (deterministic) locally tree-like regular graphs, it was previously proved that

the eigenvectors v are weakly delocalized in the sense that kvk1 6 (logN)�ckvk2
[33, 48, 26], and that eigenvectors cannot concentrate on a small set, in the sense

that any vertex set V ⇢ [[N ]] with
P

i2V |vi|2 > "kvk2 must have at least N c(")

elements [26]. Moreover, for deterministic locally tree-like regular expander graphs,

it was proved that the eigenvectors v satisfy a quantum ergodicity property: for all

a 2 RN with kak1 6 1 and
P

i ai = 0, averages of |Pi aiv
2
i |2 over many eigenvectors

v are close to 0 [15, 25, 14].

1.2. Main results II: Bulk Universality. In the second part of this thesis, we

focus on the regim 1 ⌧ d ⌧ N2/3. On this regime, it is known [90, 19, 33] that

the eigenvalue density of (d� 1)�1/2A converges to the Wigner semicircle law whose

density is ⇢sc(x) :=
p

[4� x2]+/(2⇡). For d at least (logN)4, it was established

in [19], the semi-circle law holds for the empirical eigenvalue density down to the

smallest scale and the bulk eigenvectors are completely delocalized. Using the local

semi-circle law as input, we prove that in the bulk of the spectrum the local eigenvalue

correlation functions and the distribution of the gaps between consecutive eigenvalues

coincide with those of the Gaussian orthogonal ensemble. In order to show this,

we interpolate between the adjacency matrices of random d-regular graphs and the

Gaussian orthogonal ensemble using a constrained version of Dyson Brownian motion.

As the adjacency matrix of a d-regular graph (RRG), the matrix A has the trivial

uniform eigenvector e

:= N�1/2(1, . . . , 1)⇤ with eigenvalue d. We denote by �1 >

. . . > �N�1 the ordered nontrivial eigenvalues of the rescaled adjacency matrix H,
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and by ERRG the expectation with respect to the induced law on �1 > . . . > �N�1.

By comparison, we denote by EGOE the expectation with respect to the law of the

ordered eigenvalues �1 > . . . > �N�1 of the Gaussian Orthogonal Ensemble (GOE)

on R(N�1)⇥(N�1), normalized so that the o↵-diagonal entries have variance N�1.

The typical locations �i of the eigenvalues under the semicircle law are defined by

(1.6)
i

N
=

Z 2

�
i

⇢sc(x) dx .

Theorem 1.3. Fix ↵ > 0, and suppose that d 2 [N↵, N2/3�↵]. Then, in the limit

N ! 1, the bulk gap statistics of the random d-regular graph coincide with those of

the GOE. More precisely, for any fixed  > 0, n 2 N, and � 2 C1
c (Rn), we have

(1.7)
�

ERRG � EGOE

�

�
�

N⇢sc(�i)(�i � �i+1), . . . , N⇢sc(�i)(�i � �i+n)
�

= o(1)

as N ! 1, uniformly in i 2 [[N, (1� )N ]].

Next, let p# denote the symmetrized joint law of the eigenvalues of the ensemble

# = RRG,GOE. The correlation functions are defined for n 2 [[1, N � 1]] by

(1.8) p(n)# (d�1, . . . , d�n) := p#
�

d�1, . . . , d�n,RN�1�n
�

.

Theorem 1.4. Fix ↵ > 0, and suppose that d 2 [N↵, N2/3�↵]. Then, in the limit

N ! 1, the local correlation functions of the random d-regular graph coincide with

those of the GOE. More precisely, for any fixed n 2 N, � 2 C1
c (Rn), and E 2 (�2, 2)

we have

(1.9)
Z

Rn

�(x1, . . . , xn)N
n
�

p(n)RRG � p(n)GOE

�

✓

E +
dx1

N⇢sc(E)
, . . . , E +

dxn

N⇢sc(E)

◆

= o(1) .

For the GOE, the eigenvalue correlation functions are known explicitly; see e.g.

[73]. Hence, the quantities for the GOE appearing on the left-hand sides of (1.7)

and (1.9) can be computed explicitly. In fact, the eigenvalue gap distribution has
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only been computed in the sense of averages over the gap index; for the GUE, the

computation for a fixed gap was performed in [85].

The proofs of Theorems 1.3–1.4 follow the general three-step strategy developed

in [42, 41, 40]; see e.g. [43] for a survey. In our setup, the strategy is formulated

precisely in Section 4.1. The general idea is to study the convergence of eigenvalue

statistics under Dyson Brownian motion (DBM) [34]. The three steps consist of (i)

a local law providing precise estimates on the eigenvalue density down to the scale of

individual eigenvalues, as well as the complete delocalization of the eigenvectors; (ii)

the universality of the local eigenvalue statistics after the short time t = N�1+�; and

(iii) e↵ective approximation of the local eigenvalue statistics of the original matrix

ensemble at t = 0 by the one evolved up to time t = N�1+�.

In all previous instances of the three-step strategy outlined above, the independence

of the matrix entries was crucial for steps (i) and (iii). For the random regular graph,

a new approach is required for both of these steps, the last one of which is the

main content of this paper. The local law for random regular graphs was recently

established in [19], thus performing step (i). As for step (ii), the convergence of the

local eigenvalue statistics under DBM with deterministic initial data was recently

established in [63], under the sole assumption that the eigenvalue density be bounded

at the scale N�1+�. Therefore the local semicircle law provides su�cient control on

the eigenvalues so that using [63, 19] we can perform step (ii).

Thus, the main di�culty is step (iii). There are several known methods for per-

forming this step, including Lindeberg’s proof of the central limit theorem combined

with higher moment matching conditions [86], or the Green’s function comparison

theorem [45]. For short times, a more direct method is to prove the stability of the

eigenvalues under the DBM by analysing the dynamics of the individual matrix en-

tries [24]. In all of these approaches, the independence of the matrix entries is used

in an essential way. In contrast, the entries of random regular graphs are subject to
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hard constraints, and are therefore not independent. Tracking carefully the depen-

dence of the matrix entries (using the methods from [19]), we find that the eigenvalue

evolution is stable under a constrained DBM, for times t 6 N�1+�. Here, by stability,

we mean that the changes in the local eigenvalue statistics are negligible.

This stability can also be interpreted as follows: there is a class of reasonably

well-behaved observables, which completely characterize the local bulk eigenvalue

statistics, and whose time evolution under the constrained DBM can be well approx-

imated by a switching dynamics of random regular graphs. We note that it has been

proposed that, for random regular graphs, the dynamics provided by DBM should

be replaced with a switching dynamics; see in particular [58]. However, obtaining

rigorous results on the local eigenvalue statistics using only a switching dynamics is

di�cult, because the induced eigenvalue process is neither continuous nor autonomous

[57]. Our strategy crucially relies on the fact that the eigenvalue process under DBM

is continuous and satisfies an autonomous system of SDEs.

Theorem 1.3 and Theorem 1.4 hold also for sparse random matrices with inde-

pendent entries; see [52]. We will use parts of that analysis which are applicable

here. The main e↵ort and novelty of this paper is in the control of eigenvalues under

constrained DBM up to time t = N�1+� using switchings.

1.3. Related results. Macroscopic eigenvalue statistics for random regular graphs

of fixed degree have been studied using the techniques of Poisson approximation of

short cycles [32, 56] and (non-rigorously) using the replica method [74]. These results

show that the macroscopic eigenvalue statistics for random regular graphs of fixed

degree are di↵erent from those of a Gaussian matrix. However, this is not predicted to

be the case for the local eigenvalue statistics. Spectral properties of regular directed

graphs have also been studied recently [28, 30].

The second largest eigenvalue �2 of regular graphs is of particular interest. For the

case of fixed degree, see in particular [46, 78, 21, 47, 29]. The conjecture that the
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distribution of the second largest eigenvalue on scale N�2/3 is the same as that of

the largest eigenvalue of the Gaussian Orthogonal Ensemble [80] would imply that

slightly more than half of all regular graphs are Ramanujan graphs, namely d-regular

graphs with �2 6 2
p
d� 1 (for explicit and probabilistic constructions of sequences

of Ramanujan graphs, see [66, 69, 68]). The spectrum of random regular graphs has

also received interest from the study of ⇣-functions, as it can be related by an exact

relationship to the poles of the Ihara ⇣-function of regular graphs [53, 18]; see also

[88, 89].

Another interesting direction related to the spectral properties of random regular

graphs concerns the phase diagram of the Anderson model. The model was originally

defined on the square lattice Zd, but only limited progress was made for the delocal-

ization problem in this setting. A simplified model on the infinite regular tree (Bethe

lattice) is well-understood [60, 2, 4, 3, 10, 9, 8, 7, 6, 5]; see also [11] for a review. At

large disorder, it is known that the Anderson model on the random regular graph

exhibits Poisson statistics [49]. The eigenstates of the Anderson model on the ran-

dom regular graph have also been studied in connection with many-body localization

[31, 67].

In random matrix theory, the local spectral statistics of the generalized Wigner

matrices are well understood; see in particular [55, 42, 41, 40, 45, 86, 44, 22, 38,

36]. Many results on local eigenvalue statistics also exist for Erdős-Rényi random

graphs, in particular [39, 38, 52, 51]; the latter results apply down to logarithmically

small average degrees. Similar results have also been proved for more general degree

distributions [1, 12]. However, these types of results are false for the Erdős–Rényi

graph with bounded average degree. For a review of other results for discrete random

matrices, see also [91]. For the eigenvectors of random regular graphs with d 2
[No(1), N2/3�o(1)], the asymptotic normality was proved in [23]; see also the prior

results for generalized Wigner matrices [61, 87, 24]. For random regular graphs of
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fixed degree, a Gaussian wave correlation structure for the eigenvectors was predicted

in [35] and partially confirmed in [17].

2. Geometry of Random d-regular graphs

2.1. Graphs. In this section we collect some definitions and terminologies about

graphs, and basic structure properties of random d-regular graphs.

Graphs, adjacency matrices, Green’s functions. Throughout this paper, graphs G are

always simple (i.e., have no self-loops or multiple edges) and have vertex degrees

at most d (non-regular graphs are also used). The geodesic distance (length of the

shortest path between two vertices) in the graph G is denoted by distG(·, ·). For any
graph G, the adjacency matrix is the (possibly infinite) symmetric matrix A indexed

by the vertices of the graph, with Aij = Aji = 1 if there is an edge between i and j, and

Aij = 0 otherwise. Throughout the paper, we denote the normalized adjacency matrix

by H = A/
p
d� 1, where the normalization by 1/

p
d� 1 is chosen independently of

the actual degrees of the graph. Moreover, we denote the (unnormalized) adjacency

matrix of a directed edge (i, j) by eij, i.e. (eij)kl = �ik�jl. The Green’s function of a

graph G is the unique matrix G = G(z) defined by G(H � z) = I for z 2 C+, where

C+ is the upper half plane.

In Appendix B, several well-known properties of Green’s function are summarized;

they will be used throughout the paper. The Green’s function G(z) encodes all

spectral information of H (and thus of A). In particular, the spectral resolution

is given by ⌘ = Im[z]: the macroscopic behavior corresponds to ⌘ of order 1, the

mesoscopic behavior to 1/N ⌧ ⌘ ⌧ 1, and the microscopic behavior of individual

eigenvalues corresponds to ⌘ below 1/N .

Subsets and Subgraphs. Let G be a graph, and denote the set of its edges by the

same symbol G and its vertices by G. More generally, throughout the paper, we

use blackboard bold letters for set or subsets of vertices, and calligraphic letters for
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graphs or subgraphs. For any subset X ⇢ G, we define the graph G(X) by removing

the vertices X and edges adjacent to X from G, i.e., the adjacency matrix of G(X) is

the restriction of that of G to G \X. We write G(X) for the Green’s function of G(X).

For any subgraph X ⇢ G, we denote by @X = {v 2 G : distG(v,X ) = 1} the vertex

boundary of X in G, and by @EX = {e 2 G : e is adjacent to X but e 62 X} the edge

boundary of X in G. Moreover, for any subset X ⇢ G, we denote by @X and @EX the

vertex and edge boundaries of the subgraph induced by G on X.

Neighborhoods. Given a subset X of the vertex set of a graph G and an integer r > 0,

we denote the r-neighborhood of X in G by Br(X,G), i.e., it is the subgraph induced

by G on the set Br(X,G) = {j 2 G : distG(X, j) 6 r}. In particular Br(i,G) is the

radius-r neighborhood of the vertex i.

Moreover, given vertices i, j in G and r > 0, we denote by Er(i, j,G) the smallest

subgraph of G that contains all paths of length at most r between i and j. Namely,

(2.1) Er(i, j,G) := {e 2 G : 9 a path from i to j of length at most r containing e}.

Notice that E2r(i, j,G) ⇢ Br(i,G) [ Br(j,G).
Trees. The infinite d-regular tree is the unique (up to isometry) infinite connected

d-regular graph without cycles, and is denoted by Y . The rooted d-regular tree with

root degree c is the unique (up to isometry) infinite connected graph that is d-regular

at every vertex except for a distinguished root vertex o, which has degree c.

Kesten–McKay and semicircle law. Throughout this paper, the Stieltjes transforms

of the Kesten–McKay law and that of the closely related semicircle law play an

important role. Let ⇢d(x) be the density of the (normalized) Kesten–McKay law

(1.1) and ⇢sc(x) :=
1
2⇡

p

[4� x2]+ that of Wigner’s semicircle law. We denote their

Stieltjes transforms by

(2.2) md(z) =

Z

⇢d(x)

x� z
dx, msc(z) :=

Z

⇢sc(x)

x� z
dx, z 2 C+.
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Then md(z) is explicitly related to msc(z) by the equation (see also Proposition 2.6)

(2.3) md(z) =
1

�z � d(d� 1)�1msc(z)
=

msc(z)

1� (d� 1)�1m2
sc(z)

.

Moreover, it is well known that msc(z) is a holomorphic bijection from the upper half

plane C+ to the upper half unit disk D+ := {z 2 C+ : |z| < 1}, and that it satisfies

the algebraic equation

(2.4) z = �
✓

msc(z) +
1

msc(z)

◆

, z 2 C+,

and in particular that |msc(z)| 6 1.

2.2. Structure of random and deterministic regular graphs. In this section,

we collect some properties of random and deterministic regular graphs, which we use

in the remainder of the paper.

Excess of random regular graphs. For any graph G, we define its excess to be the

smallest number of edges that must be removed to yield a graph with no cycles (a

forest). It is given by

excess(G) := #edges(G)�#vertices(G) + #connected components(G).(2.5)

There are di↵erent conventions for the normalization of the excess. Our normalization

is such that the excess of a tree or forest is 0. Note that if H ⇢ G is a subgraph,

then excess(H) 6 excess(G). We will use the following well-known estimates for the

excess in random regular graphs.

Proposition 2.1. Let � > 0 and ! > 1 be an integer. There is  > 0 such that, if

R = b logd�1 Nc, then the following holds for a uniformly chosen random d-regular

graph G on [[N ]], with probability at least 1 � o(N�!+�) for N > N0(d,!, �) large

enough.
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• All R-neighborhoods have excess at most !:

(2.6) for all i 2 [[N ]], the subgraph BR(i,G) has excess at most !.

• Most R-neighborhoods are trees:

(2.7) |{i 2 [[N ]] : the subgraph BR(i,G) contains a cycle}| 6 N �.

In fact, one can take  < �/(2! + 2).

Proof. The statements are well known; for completeness, we sketch proofs in Appen-

dix A.1. ⇤

Excess and the number of non-backtracking walks. The next proposition bounds the

number of non-backtracking walks (NBW) between two vertices in a graph in terms

of the excess of the graph. Here a non-backtracking walk of length n is a sequence

of vertices (i0, . . . , in) such that the edge {ik�1, ik} is adjacent to {ik, ik+1} and such

that the walks makes no steps backwards, i.e., ik�1 6= ik+1.

Proposition 2.2. Let G be a graph with excess at most !. Then the following hold.

• For any vertices i, j 2 G, and any k > 1, we have

|{NBW from i to j of length distG(i, j) + k � 1}| 6 2!k.(2.8)

• For any subgraph H ⇢ G and two vertices i, j in H such that E`(i, j,G) ⇢ H,

we have

|{NBW from i to j of length `+ k which are not completely in H}| 6 2!(k+1)+1.

(2.9)

The graph G does not need to be regular or finite, and self-loops and multi-edges are

allowed.
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TE(G)G

Figure 2. The left figure illustrates a finite graph G0; its extensible
vertices are shown as grey circles. The right figure shows the tree
extension TE(G0), in which a rooted tree (darkly shaded) is attached
to every extensible vertex.

Proof. The statements are presumably also well known; lacking a reference, we include

their proofs in Appendix A.2. ⇤

2.3. Tree extension. The local approximation of the Green’s function of a graph

will be defined in terms of the tree extension, defined next.

Definition 2.3 (deficit function). Given a graph G with vertex set G and degrees

bounded by d, a deficit function for G is a function g : G ! [[0, d]] satisfying degG(v) 6

d�g(v) for all vertices v 2 G. We call a vertex v 2 G extensible if degG(v) < d�g(v).

Definition 2.4 (tree extension). Let G0 be a finite graph with deficit function g.

(i) The tree extension (abbreviated TE) of G0 is the (possibly infinite) graph

TE(G0) defined by attaching to any extensible vertex v in G0 a rooted d-regular

tree with root degree d� g(v)� degG0
(v).

(ii) The Green’s function of G0 with tree extension, denoted P (G0), is the Green’s

function of the (possibly infinite) graph TE(G0).
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See Figure 2 for an illustration of the tree extension. In our main result, we

approximate the Green’s function of a regular graph at vertices i, j by that of the tree

extension of a neighbourhood of i, j. This requires specification of a deficit function,

which we will usually do using the following conventions for deficit functions, assumed

throughout the paper.

Conventions for deficit functions. Throughout this paper, all graphs G are equipped

with a deficit function g. The interpretation of the deficit function g(v) is that it

measures the di↵erence to the desired degree of the vertex v. We use the following

conventions for deficit functions.

• If the deficit function of G is not specified explicitly, it is given by g(v) =

d � degG(v). Thus no vertex is extensible and the tree extension of G is

trivial: G = TE(G).
• If X is a subset of the vertices of G, and g is the deficit function of G, then
the deficit function g0 of G(X) is given by g0(v) = g + degG(v) � degG(X)(v),

unless specified explicitly. Thus when removing the edges incident to X from

G, these are also absent in the tree extension.

• If H ⇢ G is a subgraph (which was not obtained as G(X)), then the deficit

function of H is given by the restriction of the deficit function of G on H,

unless specified explicitly. Thus any vertex v in H ⇢ G has the same degree

in the tree extension TE(H) as in TE(G).

The above conventions are illustrated in Figure 3. In particular, in the case that G is

a d-regular graph, the deficit function is always g ⌘ 0, so that TE(G) = G. Moreover,

by our conventions, the tree extension of a subgraph H ⇢ G is again a d-regular

graph.

Definition 2.5. Given an integer r > 0, we call Pij(Er(i, j,G)) the localized Green’s

function of G at vertices i, j.
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G

H ⇢ G

TE(H)

G

X
G(X) = TE(G(X))

Figure 3. Given a graph G (with the standard deficit function g =
d � degG), the left figure illustrates a subgraph H ⇢ G, which by our
conventions inherits its deficit function from G by restriction. Thus all
vertices in H have the same degrees in the tree extension TE(H) as
in G = TE(G). The right figure illustrates the graph G(X) obtained by
removing a vertex set X. By our convention on the deficit function, the
tree extension of G(X) is then trivial.

For the infinite regular tree and for the rooted infinite regular tree with given root

degree, it is elementary to compute the Green’s function explicitly, as done in the

following proposition.

Proposition 2.6. Let Y be the infinite d-regular tree. For all z 2 C+, its Green’s

function is

(2.10) Gxy(z) = md(z)

✓

�msc(z)p
d� 1

◆distY (x,y)

.

Let Y0 be the rooted infinite d-regular tree with root degree d� 1. Its Green’s function

is

(2.11) Gxy(z) = md(z)

 

1�
✓

�msc(z)p
d� 1

◆2`(x,y)+2
!

✓

�msc(z)p
d� 1

◆distY0 (x,y)

,
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where `(x, y) is the depth of the common ancestor of the vertices x and y in Y0. In

particular, if x is the root of Y0, then Gxx(z) = msc(z).

The proof is given below. More general results for Green’s functions on regular

trees are discussed e.g. in [9, Section 3] and references given there.

Proposition 2.7. Let ! > 6 and
p
d� 1 > 2!+2. Let G0 be a finite graph with

vertex set G0 and deficit function g. Assume that (i) any connected component of

G0 has excess at most !, and that (ii) the sum of deficit function over any connected

component of G0 satisfies
P

g(v) 6 8!. Then the following holds for all z 2 C+ and

all i, j 2 G0.

(i) The Green’s function Pij(G0) of TE(G0) satisfies

(2.12) |Pij(G0, z)| 6 2!+2|msc(z)|qdistG0 (i,j),

and the diagonal terms satisfy the better estimate

(2.13) |Pii(G0, z)�md(z)| 6 |msc(z)|
4

.

(ii) Let H0 ⇢ G0 be a subgraph with vertex set H0. Then for any two vertices i, j

in H0 such that E`(i, j) ⇢ H0, the ij-th entries of the Green’s functions of

the tree extensions of G0 and H0 satisfy

|Pij(G0, z)� Pij(H0, z)| 6 22!+3|msc(z)|q`+1.(2.14)

Item (i) states that Pij(G0) is bounded and has (up to constants) the same decay as

the Green’s function of the infinite d-regular tree Y . In particular, (2.12) and (2.13)

together with (2.3) imply that

(2.15) |Pij(G0, z)| 6 (1 + �ij/2)|msc(z)|.
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Item (ii) states that Pij(G0) depends only weakly on G0. Especially, it implies the

the following principle, which is used repeatedly throughout Sections 3.5–3.10.

Remark 2.8 (Localization principle). Let X be a (small) set of vertices in a graph

G. For vertices i, j 2 X, it is often convenient to replace Pij(Er(i, j,G)), namely the

ij-th entry of the Green’s function of the graph TE(Er(i, j,G)) which itself depends

on i, j, by Pij(G0) of a graph G0 which is independent of i, j and contains Er(i, j,G)
for i, j 2 X. In this situation, we abbreviate P = P (G0). The estimate (2.14) then

implies that Pij and Pij(Er(i, j,G)) are close in the sense

|Pij(Er(i, j,G))� Pij| 6 22!+3|msc|qr+1(2.16)

provided the assumptions of (2.14) are obeyed.

2.3.1. Proof of Proposition 2.6. The proof of Proposition 2.6 is a straightforward

consequence of the Schur complement formula (B.4).

Proof. Let distY(x, y) = 1. The Schur complement formula implies

(2.17) G(x)
yy =

�1

z + (d� 1)�1
P

k,l2@y\{x} G
(xy)
kl

=
�1

z + (d� 1)�1
P

k2@y\{x} G
(y)
kk

,

where @y is the set of adjacent vertices of y in Y . By homogeneity, G(x)
yy is independent

of x and y if distY(x, y) = 1 and therefore equal to the unique solution to the equation

m = �1/(z + m) with Imm > 0, which is msc. Applying the Schur complement

formula again, it follows that

(2.18) Gxx =
�1

z + d(d� 1)�1msc
= md.
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This proves (2.10) and (2.11) for x = y. The case distY(x, y) = 1 then follows, e.g.,

from

(2.19) 1 =
X

y

Gxy(Hyx � z�yx) =
dp
d� 1

Gxy � zmd,

which, using 1 + zmd +
d

d�1
mdmsc = 0, implies

(2.20) Gxy =

p
d� 1

d
(1 + zmd) = �mdmscp

d� 1
,

as claimed. The general case is similar by induction. ⇤

2.3.2. Proof of Proposition 2.7 for g ⌘ 0. For the proof of Proposition 2.6, we require

the notion of covering of a graph. Given a graph G, a graph G̃ together with a

surjective map ⇡ : G̃ ! G is a covering of G if for each x 2 G̃, the restriction

of ⇡ to the neighborhood of x is a bijection onto the neighborhood of ⇡(x) on G.

Every d-regular graph is covered by the infinite d-regular tree Y which is its universal

covering.

The Green’s functions of a graph G and a cover G̃ with covering map ⇡ : G̃ ! G

obey the following identity. For each x 2 G̃ and ⇡(x) = i 2 G, we have

Gij(z) =
X

y:⇡(y)=j

G̃xy(z),(2.21)

if the right-hand side is summable (see Appendix B for the elementary proof of

(2.21)). In particular, if G is an infinite simple d-regular graph and ⇡ : Y ! G its

universal covering map, where Y are the vertices of Y , then by (2.10) and (2.21), for

any vertex x 2 Y such that ⇡(x) = i, the resolvent entries of the graph G are given
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by

Gij = md

X

y:⇡(y)=j

✓

� mscp
d� 1

◆distY (x,y)

= md

X

k>distG(i,j)

|{non-backtracking paths from i to j of length k}|
✓

� mscp
d� 1

◆k

.

(2.22)

For the number of non-backtracking paths, recall the estimates of Proposition 2.2.

Using these, the proofs of (2.12) and (2.14) are straightforward from (2.22) if g ⌘ 0.

Proof of (2.12) for g ⌘ 0. For vertices i, j in di↵erent connected components of G0,

we have Pij(G0) = 0 and there is nothing to prove. Therefore, we can assume that i

and j are in the same connected component.

Since we assume g ⌘ 0, the tree extension G1 = TE(G0) is d-regular, and (2.22)

implies

Pij(G0, z) = md

X

k>dist(i,j)

|{NBW in G1 from i to j of length k}|
✓

� mscp
d� 1

◆k

.

(2.23)

Since G0 has excess at most !, the same is true for G1. By the estimates for the

number of non-backtracking paths from Proposition 2.2, the right-hand side of (2.22)

is summable, provided that
p
d� 1 > 2!+2, and

|Gij| 6 |md|
X

k>1

2!kqdistG0 (i,j)+k�1 = |md|2!qdistG0 (i,j)
X

k>1

(2!q)k�1

6 |md|2!qdistG0 (i,j)
X

k>0

4�k 6 2!+1|msc|qdistG0 (i,j).

This completes the proof if g ⌘ 0. ⇤

Proof of (2.14) for g ⌘ 0. As in the proof of (2.12), we can assume that i and j are

in the same connected component of G0. By (2.22), since all the non-backtracking
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paths from i to j of length 6 ` are contained in H0, we have

Pij(G0, z)� Pij(H0, z)

= md

X

k>1

|{NBW from i to j of length `+ k, not completely in H0}|
✓

� mscp
d� 1

◆`+k

.

By (2.9), we therefore have

|Pij(G0, z)� Pij(H0, z)| 6 |md|
1
X

k=1

2!(k+1)+1q`+k

= |md|22!+1q`+1

1
X

k=1

(2!q)k�1 6 22!+2|msc|q`+1,

again provided that
p
d� 1 > 2!+2. This completes the proof if g ⌘ 0. ⇤

2.3.3. Proof of Proposition 2.7 for g 6⌘ 0. To extend the bounds (2.12) and (2.14)

to g 6⌘ 0, we use an alternative representation of Pij(G0) given as follows. In Defini-

tion 2.4, Pij(G0, z) is defined as the Green’s function of the infinite graph obtained

by attaching a d-regular tree at every extensible vertex of G0. The next lemma shows

that it is equivalently given by attaching to every extensible vertex a self-loop with

z-dependent complex weight. The proof of the lemma follows by application of the

Schur complement formula.

Lemma 2.9. Let z 2 C+. Then for vertices i, j 2 G0,

Pij(G0, z) = (H2 � z)�1

where H2 is the normalized z-dependent adjacency matrix obtained by attaching to

any extensible vertex v in G0 a self-loop with complex weight �msc(z)(d � g(v) �
degG0

(v))/
p
d� 1.
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Proof. Let G1 = TE(G0), and denote the normalized adjacency matrix of G0 and G1

by H0 and H1 respectively. Then H1 has the block form

H1 =

2

4

H0 B0

B D

3

5

where D is the normalized adjacency matrix of several copies of Y0, i.e. infinite d-

regular tree with root degree d�1, and Bxy is 1/
p
d� 1 if y is an extensible vertex of

G0 and x the root of one of the former copies of the tree Y0, and Bxy = 0 otherwise.

By the Schur complement formula (B.3), it follows that, for any i, j 2 G0,

Gij(G1, z) = (H1 � z)�1
ij = (H0 � z � B0(D � z)�1B)�1

ij .

Since B0(D � z)�1B is a diagonal matrix, indexed by the extensible vertices in G0

(which are disjoint), and since B is normalized by 1/
p
d� 1, it follows from (2.11)

with x = y that

(B0(D � z)�1B)vv = msc1v is extensible

d� g(v)� degG0
(v)

d� 1
.

Thus H2 = H0 � B0(D � z)�1B and the claim of the lemma follows. ⇤

As previously, we abbreviate G1 = TE(G0), and denote by G2 the finite z-dependent

graph with complex weight obtained by attaching at each extensible vertex v of G0

a self-loop with weight �msc(z)(d � g(v) � degG0
(v))/

p
d� 1. Moreover, to extend

(2.12) and (2.14) from g ⌘ 0 to g 6⌘ 0, we denote by G 0
0 the same graph as G0 but

with deficit function g ⌘ 0, by G 0
1 = TE(G 0

0) its tree extension, and by G 0
2 the finite

z-dependent graph with complex weight obtained by attaching at each extensible

vertex v of G 0
0 a self-loop with weight �msc(z)(d� degG0

(v))/
p
d� 1. We denote the

normalized adjacency matrices of G2 and G 0
2 by H2 and H 0

2 respectively.
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Proof of (2.12) for g 6⌘ 0. By Lemma 2.9 and the case g ⌘ 0, we have

�0 := max
i,j2G0

|Gij(G 0
2, z)|

�|msc|qdistG0 (i,j)
��1 6 2!+1.

Our goal is to estimate

� := max
i,j2G0

|Gij(G2, z)|
�|msc|qdistG0 (i,j)

��1
.

Notice that H2 �H 0
2 is a diagonal matrix with entries

(2.24) (H2 �H 0
2)vv =

mscg(v)

d� 1
, v 2 G0,

and the resolvent formula (B.1) implies

G(G 0
2, z)ij �G(G2, z)ij =

X

v2G0

Giv(G 0
2, z)(H2 �H 0

2)vvG(G2, z)vj.(2.25)

By multiplying both sides of (2.25) by (|msc|qdistG0 (i,j))�1, we obtain

|Gij(G2, z)|
�|msc|qdistG0 (i,j)

��1

6 �0 +
X

v2G0

�0�|(H2 �H 0
2)vv||msc|qdistG0 (i,v)+distG0 (v,j)�distG0 (i,j)

6 �0 +
1

d� 1
�0�

X

v2G0

g(v) 6 2!+1 +
8!2!+1

d� 1
� 6 2!+1 + �/2,

where the first inequality uses the triangle inequality distG0(i, v) + distG0(v, j) �
distG0(i, j) > 0 and q 6 1, and the second and third inequalities follow from the

assumptions
P

g(v) 6 8!,
p
d� 1 > 2!+2, and ! > 6. By taking the maximum on

the left-hand side of the above inequality and rearranging it, we get � 6 2!+2. ⇤

Proof of (2.14) for g 6⌘ 0. The extension to the case g 6⌘ 0 again follows by compar-

ing to the case g ⌘ 0. We define H2 and H0
2 analogously to G 0

2 and G 0
2. Our goal now
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is to bound

� := max
i,j2H0

|Gij(G2)�Gij(H2)|
�|msc|q`(i,j)+1

��1
.

The resolvent identity (B.1) and (2.24) imply

Gij(G 0
2)�Gij(G2) =

X

v2G0

Giv(G 0
2)
mscg(v)

d� 1
Gvj(G2),(2.26)

Gij(H0
2)�Gij(H2) =

X

v2H0

Giv(H0
2)
mscg(v)

d� 1
Gvj(H2).(2.27)

For vertices i, j 2 H0, set

`(i, j) := max{` : all paths in G0 from i to j of length 6 ` are contained in H0},

and given any v 2 G0, we abbreviate ` = `(i, j), `1 = distG0(i, v), `2 = distG0(v, j).

To bound �, we distinguish two cases:

(i) `1 + `2 > `+ 1. Then already (2.12) implies

�

�

�

�

Giv(G 0
2)
mscg(v)

d� 1
Gvj(G2)

�

�

�

�

,

�

�

�

�

Giv(H0
2)
mscg(v)

d� 1
Gvj(H2)

�

�

�

�

6 22!+4g(v)

d� 1
|msc|q`+1.

(ii) `1 + `2 6 `. Then by assumption we must have v 2 H0, and `(i, v) > ` � `2

and `(v, j) > `� `1. Therefore, using the case g ⌘ 0 for |Giv(G 0
2)�Giv(H0

2)|
and (2.12) for |Gvj(G2)| and |Giv(H0

2)|,
�

�

�

�

Giv(G 0
2)
mscg(v)

d� 1
Gvj(G2)�Giv(H0

2)
mscg(v)

d� 1
Gvj(H2)

�

�

�

�

6 |msc|g(v)
d� 1

⇣

|Giv(G 0
2)�Giv(H0

2)||Gvj(G2)|+ |Giv(H0
2)||Gvj(G2)�Gvj(H2)|

⌘

6 2!+2(�+ 22!+2)g(v)

d� 1
|msc|q`+1.
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Taking the di↵erence of (2.26) and (2.27), dividing both sides by |msc|q`(i,j)+1, and

then taking the maximum over i, j 2 H0, this leads to

� 6 22!+2 +
2!+2(�+ 22!+2)

d� 1

X

v2G0

g(v).

Since by assumptions
P

g(v) 6 8!,
p
d� 1 > 2!+2 and ! > 6, again rearranging the

above expression, we get � 6 22!+3. This finishes the proof. ⇤

3. Spectral Density and Eigenvectors

Recall that GN,d denotes the set of simple d-regular graphs on the vertex set [[N ]].

Throughout the paper, we control error estimates in terms of (large powers of) the

parameter

(3.1) q(z) :=
|msc(z)|p
d� 1

6 1p
d� 1

,

where z 2 C+. We will often omit the parameter z from the notation if it is clear

from the context.

The main result we will prove in this section is the following theorem, Theo-

rem 3.1. It states that, in D, the Green’s function Gij(G) is well approximated

by Pij(Er⇤(i, j,G)), which is random, but only depends on the local graph structure

of G near the vertices i and j. Together with this information on the local graph

structure, the result of Theorem 3.1 implies the results stated in Section 1.1.

Theorem 3.1. Fix ↵ > 4, ! > 8 and
p
d� 1 > (! + 1)22!+45, and set `⇤ =

b↵ logd�1 logNc and r⇤ = 2`⇤ + 1. Then, for G chosen uniformly from GN,d, the

Green’s function satisfies

|Gij(G, z)� Pij(Er⇤(i, j,G), z)| 6 |msc(z)|q(z)r⇤ ,(3.2)
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with probability 1�o(N�!+8), uniformly in i, j 2 [[N ]], and uniformly in z 2 D, where

D is as in (1.4). Here we assume that N > N0(↵,!, d) is large enough and that Nd

is even.

We emphasize that, for fixed d, the right-hand side of (3.2) converges to 0, as

N ! 1, uniformly in the spectral domain D. The constants in the statement of the

theorem can be improved at the expense of a longer proof and a more complicated

statement. We do not pursue this.

Remark 3.2. The equation (3.2) implies that the individual entries of the Green’s

function do not concentrate. For example,

Gii(z) = Pii(Er⇤(i, i,G), z) + O(logN)�↵

and the first term on the right-hand side can be easily seen to depend strongly on the

local graph structure. Its fluctuation is of order 1.

Proof of Theorem 1.1. Thanks local structure of a random regular graph, under the

assumptions of the theorem, there are  > 0 and � > 0 such that, with R =

b logd�1 Nc, one can assume that the radius-R neighborhoods of all but N � many

vertices of G coincide with those of the infinite d-regular tree, and that the R-

neighborhoods of all other vertices have excess at most ! (see e.g. Proposition 2.1).

Moreover, for the vertices i that have radius-R tree neighborhoods, we have (see e.g.

Proposition 2.6)

(3.3) Pii(Er⇤(i, i,G)) = md.

The vertices whose R-neighbourhood has bounded excess still satisfy (see e.g. Propo-

sition 2.7)

(3.4) |Pii(Er⇤(i, i,G))| 6 3|msc|/2 6 3/2.
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Therefore (3.2) and (3.3) imply that Gii(z) = md(z)+O(|msc(z)|q(z)r⇤) for all z 2 D
and at least N �N�� vertices i 2 [[N ]]. For the remaining vertices, by (3.4), we still

have |Gii(z)| 6 2. Thus

m(z) =
1

N

N
X

i=1

Gii(z) = md(z) + O(logN)�↵,

as claimed. ⇤

3.1. Proof outline and main ideas. In this section, we give a high-level outline

of the proof of Theorem 3.1, whose details occupy the remainder of the paper. The

proof is based on the general principle that, for small distances, a random regular

graph behaves almost deterministically, while on the other hand, for large distances,

it behaves much like a random matrix.

3.1.1. Parameters. Throughout the paper, we fix constants ↵ > 4, ! > 8, 0 < � <

1/!, 0 <  < �/(2! + 2),
p
d� 1 > (! + 1)22!+45, and set `⇤ = d↵ logd�1 logNe

and r⇤ = 2`⇤ + 1. We also set R = b logd�1 Nc, and write r = 2` + 1, where ` is a

parameter chosen such that

` 2 [[`⇤, 2`⇤]].(3.5)

We always assume that Nd is even and su�ciently large (depending on the previous

parameters).

3.1.2. Structure of the proof. The proof consists of several sections, which we briefly

describe in this section. Here, we also define several subsets of GN,d, namely the sets

⌦�(z, `) ⇢ ⌦(z, `) ⇢ ⌦+
1 (z, `) ⇢ ⌦̄ ⇢ GN,d, ⌦0

1(z, `) ⇢ ⌦̄ ⇢ GN,d.

These sets depend on parameters z 2 C+ and ` 2 N (and also on the previously fixed

parameters).
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Small distance structure; the set ⌦̄. The small distance behavior is captured in terms

of cycles in neighborhoods of radius R. For any graph, we define the excess to be the

smallest number of edges that must be removed to yield a graph with no cycles (a

forest). Then, with R,!, � as fixed above, we define the set ⌦̄ ⇢ GN,d to consist of

graphs such that

• the radius-R neighborhood of any vertex has excess at most !;

• the number of vertices that have an R-neighborhood that contains a cycle is

at most N �.

The set ⌦̄ provides rough a priori stability at small distances. All regular graphs

appearing throughout the paper will be members of ⌦̄. It is well-known that P(⌦̄) >

1� o(N�!+�); see Proposition 2.1.

Green’s function approximation; the sets ⌦(z, `) and ⌦�(z, `). For z 2 C+, we define

the set ⌦(z, `) ⇢ ⌦̄ be the set of graphs G such that for any two vertices i, j in [[N ]],

it holds that

|Gij(z)� Pij(Er(i, j,G), z)| 6 |msc|qr.(3.6)

Our main goal is to prove that ⌦(z, `) has high probability uniformly in the spectral

domain z 2 D. That ⌦(z, `) has high probability is not di�cult to show if |z| is
large enough; see Section 3.2. To extend this estimate to smaller z, we define the set

⌦�(z, `) ⇢ ⌦(z, `) by the same conditions as ⌦(z, `), except that the right-hand side

in (3.6) is smaller by a factor 1/2:

|Gij(z)� Pij(Er(i, j,G), z)| 6 1

2
|msc|qr.(3.7)

Our main goal is to show that, for any z 2 D \ ⇤` (where the spectral domain is

defined in (1.4) and ⇤` is defined in (3.239)), if ⌦(z, `) has high probability, then

the event ⌦(z, `) \ ⌦�(z, `) has very small probability, so that ⌦�(z, `) still has high

probability. Then, by the Lipschitz-continuity of the Green’s function, it follows that
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⌦�(z, `) ⇢ ⌦(z0, `) for small |z � z0|, and thus that ⌦(z0, `) also has high probability.

This can then be repeated to show that ⌦(z, `) holds for all z 2 D \ ⇤` with high

probability. Since these sets ⇤` all together cover D, it follows that ⌦(z, `⇤) holds for

all z 2 D with high probability.

Local resampling. To show that ⌦(z, `) \ ⌦�(z, `) has small probability, we use the

random matrix-like structure of random regular graphs at large distances. To this

end, we fix a vertex, without loss of generality chosen to be 1, and abbreviate the

`-neighborhood of 1 (as a set of vertices in [[N ]] and as a graph, respectively) by

(3.8) T = B`(1,G), T = B`(1,G).

In Section 3.3, we resample the boundary of the neighborhood T by switching

the boundary edges with uniformly chosen edges from the remainder of the graph.

The switched graph is often denoted by G̃. On the vertex set T, it coincides with

the unswitched graph G, but the boundary of T in the switched graph G̃ is now

essentially random compared to the original graph G.
Given G, the switching is specified by the resampling data S, which consists of µ in-

dependently chosen oriented edges from G(T). The local resampling is implemented by

switching a boundary edge of T with one of the independently chosen edges encoded

by S. In fact, in this operation, not all pairs of edges can be switched (are switchable)

while keeping the graph simple. Therefore, given S, we denote by WS ⇢ [[1, µ]] the

index set for switchable edges (see Section 3.3 for the definition), whose switching

leaves the uniform measure on GN,d invariant. For notational convenience, without

loss of generality, we assume that WS = {1, 2, 3, . . . , ⌫} where ⌫ 6 µ throughout the

paper (except in the definition in Section 3.3).

Switching from G to G̃. Throughout Sections 3.3.7–3.10, we condition on a graph G
that satisfies certain estimates, and only use the randomness of the switching that

specifies how to modify G to G̃. By our choice of ` and using T has bounded excess
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(which we can and do assume), the number of edges in the boundary of T is about

(logN)O(1). The randomness of these edges ultimately provides access to concentra-

tion estimates, which exhibit the random matrix-like structure of the random regular

graph at large distances.

Note that, if we remove the vertex set T from G, our switchings have a simpler

e↵ect than in G: they only consist of removing the edges {bi, ci} and adding instead

{ai, bi}, for i 2 WS. Therefore, instead of studying the change from G to G̃ at once,

it will be convenient to analyze the e↵ect of the switching in several steps. For this,

we define the following graphs (which need not be regular).

• G is the original unswitched graph;

• G(T) is the unswitched graph with vertices T removed;

• Ĝ(T) is the intermediate graph obtained from G(T) by removing the edges

{bi, ci} with i 2 WS;

• G̃(T) is the switched graph obtained from Ĝ(T) by adding the edges {ai, bi}
with i 2 WS; and

• G̃ is the switched graph TS(G) (including vertices T).

Following the conventions of Section 2.3, the deficit functions of these graphs are

given by d � deg, where deg the degree function of the graph considered, and we

abbreviate their Green’s functions by G, G(T), Ĝ(T), G̃(T), and G̃ respectively.

Distance estimates. To use the local resampling, we require some estimates on the

local distance structure of graphs and some a priori estimates on their Green’s func-

tions. These are collected in Sections 3.3.7–3.4. In fact, we use both the usual graph

distance (of the unswitched and switched graphs) and a notion of “distance” that is

defined in terms of the size of the Green’s function of the graph from which the set

T is removed (again for the unswitched and switched graph).

The need for the Green’s function distance arises as follows. While estimates that

involve sums over the diagonal of the Green’s function can be controlled quite well
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using only the graph distance, estimates of sums of o↵-diagonal terms are more deli-

cate because the number terms is squared compared to the diagonal terms. By direct

combinatorial arguments, it would be di�cult to control large distances su�ciently

precisely. However, to understand spectral properties, it is the size of the Green’s

function rather than distances themselves that is relevant; and while the size of the

Green’s function between two vertices is directly related to the distance between them

if there are only few cycles, on a global scale (where many cycles could be present)

cancellations can make the Green’s function much smaller. These cancellations are

captured in terms of a Ward identity, which states that the Green’s function of any

symmetric matrix obeys (see also Appendix B)

(3.9)
1

N

N
X

i=1

|Gij(z)|2 = ImGii(z)

Im z
.

Removing the neighborhood T and stability under resampling; the sets ⌦+
1 (z, `). Our

goal is to show that estimates on the Green’s function of G improve near the vertex

1 under the above mentioned local resampling. For this, we work with the Green’s

function of the graph G(T) obtained from G by removing the vertex set T (on which

the graph does not change under switching).

As a preliminary step to showing that the estimates for the Green’s function im-

prove, we show that they are stable under the operation of removing T and resam-

pling, i.e., roughly that the estimates analogous to those assumed continue to hold.

More precisely, in Section 3.5, we show that if G 2 ⌦(z, `), then the (non-regular)

graph G(T) obeys the analogous estimate

(3.10)
�

�Gij(G(T), z)� Pij(Er(i, j,G(T)), z)
�

� 6 2|msc|qr.

We define the set ⌦+
1 (z, `) ⇢ ⌦̄ similarly as the set ⌦(z, `), except that G is replaced

by the graph G(T) (and with di↵erent constant), i.e., ⌦+
1 (z, `) is the set of G 2 ⌦̄ such
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that

�

�Gij(G(T), z)� Pij(Er(i, j,G(T)), z)
�

� 6 210|msc|qr.(3.11)

Clearly, by (3.10), we have ⌦(z, `) ⇢ ⌦+
1 (z, `). In Section 3.6, we show that if G(T)

obeys the (stronger) estimate (3.10), then with high probability the resampled graph

obeys G(T) 2 ⌦+(z, `).

Locally improved Green’s function approximation; the sets ⌦0
1(z, `). The set ⌦

0
1(z, `) ⇢

⌦̄ is defined by the improved estimates (3.212)–(3.215) near the vertex 1, with con-

stant K = 210. In Sections 3.7–3.10, it is proved that if we start with a graph

G 2 ⌦+
1 (z, `), with high probability with respect to the local resampling around

vertex 1, the switched graph G̃ belongs to ⌦0
1(z, `).

Involution. To sum up, the argument outlined above shows that, for any graph G in

⌦(z, `), with high probability with respect to the randomness of the local resampling,

the switched graph G̃ is in the set ⌦0
1(z, `). However, our goal was to show that a

uniform d-regular graph G is in ⌦0
1(z, `), except for an event of small probability.

This follows from the statement we proved for G̃ using that our switching acts as an

involution on the larger product probability space (see Proposition 3.9).

Self-consistent equation. The sets ⌦+
1 (z, `) and ⌦0

1(z, `) depend on the choice of vertex

1. However, for any i 2 [[N ]], we can define ⌦0
i(z, `) in the same way, by replacing the

vertex 1 in the above definitions by vertex i (or using symmetry). By a union bound,

then also the union of the events ⌦0
i(z, `) over i 2 [[N ]] holds with high probability. On

the latter event, we derive (in Section 3.11) a self-consistent equation for the quantity

Q(G) = 1

Nd

X

(i,j)2 ~E

G(i)
jj (G),

where the sum ranges over the set of oriented edges in G, and G(i)(G) is the Green’s

function of the graph G with vertex i removed. On the infinite d-regular tree, it is



35

straightforward computation to show that G(i)
jj (z) = msc(z) holds for any directed

edge (i, j) (see Proposition 2.6). For the random regular graph, we will show that

Q(G) obeys (see (3.230))

Q(G)�msc =
d� 2

d� 1
mdm

2`+1
sc (Q(G)�msc) + error.

The main result of Section 3.11, proved using this self-consistent equation, is that,

for any z 2 D \ ⇤`,
\

16i6N

⌦0
i(z, `) ⇢ ⌦�(z, `),

where ⇤` ⇢ C+ is a domain on which the self-consistent equation is not singular (see

Section 3.11 for details). In the final step, we will use di↵erent choices of ` to cover

the entire spectral domain D.

Conclusion. In summary, in Sections 3.5–3.11, we show that the probability of ⌦(z, `)\
⌦�(z, `) is negligible. By the Lipschitz property of the Green’s function, ⌦�(z, `) ⇢
⌦(z0, `) given that |z� z0| is small enough. It follows that if ⌦�(z, `) holds with high

probability, then ⌦�(z, `) \ ⌦�(z0, `) holds with high probability. This can then be

repeated to show that ⌦(z, `) holds for all z 2 D \ ⇤` with high probability. The

proof of Theorem 3.1 is then completed by showing that D ⇢ [`2[[`⇤,2`⇤]]⇤` and thus

⌦(z, `⇤) holds for all z 2 D with high probability.

3.2. Initial estimates. As the first step of the proof of Theorem 3.1, we now show

that (3.2) holds whenever |z| > 2d� 1. Indeed, the following proposition states that

(3.2) holds deterministically for |z| > 2d�1 under the assumption that the graph has

locally bounded excess, which is guaranteed to hold with high probability by (2.6).

(Related results appear in [33].)

Proposition 3.3. Let ! > 6,
p
d� 1 > 2!+2 and N > N0(!, d) large enough.

Let G be a d-regular graph on N vertices, with excess at most ! in any radius-R

neighborhood. Then for any z 2 C+ with |z| > 2d� 1, and any i, j 2 G, the Green’s
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function of G satisfies

|Gij(z)� Pij(Er(i, j,G), z)| 6 1

2
|msc|qr.(3.12)

3.2.1. Proof of Proposition 3.3. To prove Proposition 3.3, we need an upper bound

on the entries of the Green’s function. It can be obtained, for example, by the

Combes–Thomas method [27].

Lemma 3.4. For any finite simple graph G with degree bounded by d, and any z with

|z| > 2d� 1,

(3.13) |Gij(z)| 6 1

d
, |Gij(z)| 6 1

(d� 1)distG(i,j)/2
.

Proof. We denote the normalized adjacency matrix of G by H (where we recall that

the normalization of the entries is always by 1/
p
d� 1). The first bound in (3.13)

is immediate since the spectrum of H is contained in [�d/
p
d� 1, d/

p
d� 1], which

implies that

(3.14) |Gij(z)| 6 1

|z|� d/
p
d� 1

6 1

d
.

To show the second bound, set ⌧ = 1
2
log(d � 1). Fix a vertex i, and define the

diagonal matrix M by

Mjj = exp{⌧distG(i, j)}.

Then we have

Gije
⌧distG(i,j) = h�j,MGM�1�ii = h�j, (MHM�1 � z)�1�ii.

The entries of the matrix MHM�1 are given by

(MHM�1)xy = e⌧(distG(i,x)�distG(i,y))Hxy.
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If Hxy 6= 0, then |distG(i, x)� distG(i, y)| 6 1, and

max
x

X

y

|(MHM�1)xy| 6 de⌧/
p
d� 1 6 d,

max
y

X

x

|(MHM�1)xy| 6 de⌧/
p
d� 1 6 d.

Therefore kMHM�1k1!1 and kMHM�1k1!1 are bounded by d, and by interpola-

tion

kMHM�1k2!2 6
p

kMHM�1k1!1kMHM�1k1!1 6 d.

Therefore, the spectrum of MHM�1 is contained in the set {z 2 C : |z| 6 d}. In

particular, for z such that |z| > 2d � 1, its distance to the spectrum of MHM�1 is

at least 1, and thus

|Gije
⌧distG(i,j)| = |h�j, (MHM�1 � z)�1�ii| 6 1,

which implies (3.13). This completes the proof. ⇤

Proof of Proposition 3.3. Let r0 := dr + 1� 2(r + 2) logd�1 |msc|e = O(r). Then, for

vertices i, j such that distG(i, j) > r0, Lemma 3.4 implies

|Gij(z)| 6 1

(d� 1)r0/2
6 |msc|qr+1,

and in particular (3.12) follows since q 6 1/
p
d� 1 6 1/2 and Pij(Er(i, j,G)) = 0.

Thus we can assume distG(i, j) < r0. Let G0 := Br0+r(i,G), let G1 = TE(G0) be the

tree extension of G0, and let P be the Green’s function of G1. Then, by (2.14), we

have

(3.15) |Pij � Pij(Er(i, j,G))| 6 22!+3|msc|qr+1.
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Therefore it su�ces to prove the claim with Pij(Er(i, j,G)) replaced by Pij, and an

additional factor 1/2 on the right-hand side. Let T0 := Br0(i,G) and @T0 = {v 2 G :

distG(v,T0) = 1}. By the Schur complement formula (B.4),

G|T0 = (H � z � B0G(T0)B)�1,

P |T0 = (H � z � B0P (T0)B)�1,

where H is the normalized adjacency matrix on T0 induced by G and B is the part of

the adjacency matrix of the edges from @T0 to T0. Taking the di↵erence of the last

two equations, for any i, j 2 T0,

|(G� P )ij| 6
X

x,y2@T0

|(PB0)ix|
�|G(T0)

xy |+ |P (T0)
xy |� |(BG)yj|.

Since the radius-R neighborhood of i has excess at most !, each row of B contains

at most ! + 1 nonzero entries. Therefore, by (2.12), Lemma 3.4, and noticing that

distG(i, x) > r0 + 1 and distG(y, j) > r0 + 1� distG(i, j), we have

|(PB0)ix| 6 2!+2(! + 1)qr0+1, |(BG)yj| 6 ! + 1

(d� 1)(r0+1�distG(i,j))/2
,

where we recall the definition q = |msc|/
p
d� 1. Moreover, it follows from (3.29)

that

|{x 2 @T0 : distG(T0)(x, @T0 \ {x}) 6 R/2}| 6 2!,

using that R > 2r0. Therefore, by the second bound of (3.13), |G(T0)
xy | 6 (d� 1)�R/4

for all x, y 2 @T0 except for the diagonal entries and at most 4!2 o↵-diagonal entries.

By the first bound of (3.13), for these remaining entries we have |G(T0)
xy | 6 1/d. The
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same bounds hold for P (T0) instead of G(T0). As a result, we obtain

|(G� P )ij| 6 2!+2(! + 1)2qr0+1

(d� 1)(r0�distG(i,j)+1)/2

X

x,y2@T0

�|(G(T0)
xy |+ |P (T0))xy|

�

6 2!+3(! + 1)2|msc|r0+1

(d� 1)r0+1�distG(i,j)/2

✓ |@T0|+ 4!2

d
+

|@T0|2
(d� 1)R/4

◆

.

Using that |@T0| 6 d(d�1)r0 , that |msc| 6 1/d for |z| > 2d�1, that d�1 > 2(!+1),

as well as that R > 4r0, the right-hand side is bounded by

|(G� P )ij| 6 2!+3(! + 1)2|msc|r0+1

(d� 1)r0+1�distG(i,j)/2

✓

d(d� 1)r0 + 4!2

d
+

d2(d� 1)2r0

(d� 1)R/4

◆

6 2!+4(! + 1)2

(d� 1)r0+2�distG(i,j)/2
6 2!+2

(d� 1)r0/2
6 2!+2|msc|qr+1,

where we used that distG(i, j) < r0. Together with (3.15), we conclude that

|Gij(z)� Pij(Er(i, j,G), z)| 6 (22!+3 + 2!+2)|msc|qr+1 6 1

2
|msc|qr,(3.16)

where the last inequality follows from q = |msc|/
p
d� 1 6 2�3(!+2), using that

p
d� 1 > 2!+2. ⇤

3.3. Local resampling by switching. In this section, we define a local resampling

of a random regular graph by using switchings. We e↵ectively resample the edges on

the boundary of balls of radius `, by switching them with random edges from the re-

mainder of the graph. This resampling generalizes the local resampling introduced in

[19], where switchings were used to resample the neighbors of a vertex (corresponding

to ` = 0). The local resampling provides an e↵ective access to the randomness of the

random regular graph, which is fundamental for the remainder of the paper.

3.3.1. Definitions. To introduce the local resampling, we require some definitions.

Graphs and edges. We consider simple d-regular graphs on vertex set [[N ]] and identify

such graphs with their sets of edges throughout this section. (Deficit functions do not

play a role in this section.) For any graph G, we denote the set of unoriented edges
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by E, and the set of oriented edges by ~E := {(u, v), (v, u) : {u, v} 2 E}. For a subset

~S ⇢ ~E, we denote by S the set of corresponding non-oriented edges. For a subset

S ⇢ E of edges we denote by [S] ⇢ [[N ]] the set of vertices incident to any edge in S.

Moreover, for a subset V ⇢ [[N ]] of vertices, we define E|V to be the subgraph of G
induced on V.

v1

v3 v4

v2

Figure 4. The switching encoded by the two directed edges ~S =
{(v1, v2), (v3, v4)} replaces the unoriented edges {v1, v2}, {v3, v4} by
{v1, v4}, {v2, v3}.

Switchings. A (simple) switching is encoded by a pair of oriented edges ~S = {(v1, v2), (v3, v4)} ⇢
~E. We assume that the two edges are disjoint, i.e. that |{v1, v2, v3, v4}| = 4. Then the

switching consists of replacing the edges {v1, v2}, {v3, v4} by the edges {v1, v4}, {v2, v3},
as illustrated in Figure 4. We denote the graph after the switching ~S by T~S(G), and
the new edges ~S 0 = {(v1, v4), (v2, v3)} by

(3.17) T (~S) = ~S 0.

(Double switchings, which we used in [19], are not needed in this paper; henceforth

we will therefore refer to simple switchings as switchings.)

Resampling data. Our local resampling involves a center vertex, which by symmetry

we now assume to be 1, and a radius `. Given a d-regular graph G, we abbreviate

T = B`(1,G) and T = B`(1,G). The edge boundary @ET of T consists of the edges

in G with one vertex in T and the other vertex in [[N ]] \ T, as illustrated in Figure 5.

Our local resampling switches the edge boundary of T with randomly chosen edges

in G(T) if the switching is admissible (see below), and leaves them in place otherwise.
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`

1

a3

a2

a4

a5 = a6
l6

l4 = l5

l1

l2 = l3

a1

Figure 5. The figure illustrates the neighborhood T = B`(1,G)
(within the shaded area) and its edge boundary @ET , consisting of the
edges ei = {li, ai}, 1 6 i 6 µ. Our local resampling switches the
switchable edges ei (corresponding to i 2 WS) with randomly chosen
edges from the remainder of the graph (not shown). Several exceptional
cases can occur. In particular, the vertices ai are not necessarily distinct
(e.g., a5 = a6 in the figure), and the boundary vertices li may have
di↵erent degrees in the graph obtained by removing the set T (e.g., l1
has only one outgoing edge in the figure, while most of the other li has
two outgoing edges).

To be precise, given a graph G, we enumerate @ET as @ET = {e1, e2, . . . , eµ}, and
orient the edges ei by defining ~ei to have the same vertices as ei and to be directed

from a vertex li 2 T to a vertex ai 2 [[N ]] \ T. The directed edges ~ei = (li, ai) are

illustrated in Figure 5. Note that µ and the edges e1, . . . , eµ depend on G.
Then we choose (b1, c1), . . . , (bµ, cµ) to be independent, uniformly chosen oriented

edges from the graph G(T), i.e., the edges of G that are not incident to T, and define

(3.18) ~Si = {~ei, (bi, ci)}, S = (~S1, ~S2, . . . , ~Sµ).

The sets S will be called the resampling data for G. By definition, the edges ei are

distinct, but the vertices ai are not necessarily distinct and neither are the vertices

li.
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Admissible switchings. For i 2 [[1, µ]], we define the indicator functions

Ii ⌘ Ii(G,S) := 1(|[Si]| = 4, E|[S
i

] = Si),

Ji ⌘ Ji(G,S) := 1(|[Si] \ [Sj]| 6 1 for all j 6= i),

and the set of admissible switchings

WS ⌘ W (G,S) := {i 2 [[1, µ]] : Ii(G,S)Ji(G,S) = 1}.(3.19)

The interpretation of Ii = 1 is that the graph E|[S
i

] is 1-regular. The interpretation

of Ji = 1 is that the edges of Si do not interfere with the edges of any other Sj.

Indeed, the condition |[Si] \ [Sj]| 6 1 guarantees that the switchings encoded by ~Si

and ~Sj do not influence each other, meaning that T~S
i

and T~S
j

commute. We say that

the index i 2 [[1, µ]] is admissible or switchable if i 2 WS.

Let ⌫ := |WS| be the number of admissible switchings and i1, i2, . . . , i⌫ be an

arbitrary enumeration of WS. Then we define the switched graph by

(3.20) TS(G) :=
⇣

T~S
i1
� · · · � T~S

i

⌫

⌘

(G)

and the switching data by

(3.21) T (S) := (Ti(~Si), . . . , Tµ( ~Sµ)), Ti(~Si) =

8

>

>

<

>

>

:

T (~Si) (i 2 WS)

~Si (i 62 WS).

3.3.2. Reversibility. To make the structure more clear, we introduce an enlarged

probability space. Equivalently to the definition above, the sets ~Si are uniformly

distributed over

Si(G) = {~S ⇢ ~E : ~S = {~ei,~e},~e is not incident to T},
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i.e., the set of pairs of oriented edges in ~E containing ~ei and another oriented edge

in G(T). Therefore S = (~S1, ~S2, . . . , ~Sµ) is uniformly distributed over the set S(G) =
S1(G)⇥ · · ·⇥ Sµ(G).

Definition 3.5. For any graph G 2 GN,d, denote by ◆(G) = {G} ⇥ S(G) the fibre of

local resamplings of G (with respect to vertex 1), and define the enlarged probability

space

G̃N,d = ◆(GN,d) =
G

G2G
N,d

◆(G)

with the probability measure P̃(G,S) := P(G)PG(S) = (1/|GN,d|)(1/|S(G)|) for any

(G,S) 2 G̃N,d. Here P(G) = 1/|GN,d| is the uniform probability measure on GN,d, and

for G 2 GN,d, we denote the uniform probability measure on S(G) by PG.

Let ⇡ : G̃N,d ! GN,d, (G,S) 7! G be the canonical projection onto the first compo-

nent.

Proposition 3.6. ⇡ is measure preserving: P = P̃ � ⇡�1.

Proof. Note that ⇡�1(G) = ◆(G). Therefore

(3.22) P̃(⇡�1(G)) = P̃(◆(G)) =
X

S2S(G)

P̃(G,S) = P(G)
X

S2S(G)

1

|S(G)| = P(G),

as claimed. ⇤

On the enlarged probability space, we define the maps

T̃ : G̃N,d ! G̃N,d, T̃ (G,S) := (TS(G), T (S)),(3.23)

T : G̃N,d ! GN,d, T (G,S) := ⇡(T̃ (G,S)) = TS(G).(3.24)

For the statement of the next proposition, recall that GN,d denotes the set of sim-

ple d-regular graph on [[N ]]. For any finite graph T on a subset of [[N ]], we define
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GN,d(T ) := {G 2 GN,d : B`(1,G) = T } to be the set of d-regular graphs whose radius-`
neighborhood of the vertex i in G is T .

Proposition 3.7. For any graph T , we have

(3.25) T̃ (◆(GN,d(T ))) ⇢ ◆(GN,d(T )),

and T̃ is an involution: T̃ � T̃ = id.

Proof. The first claim is obvious by construction. To verify that T̃ is an involution,

let (G,S) 2 G̃N,d and abbreviate (G̃, S̃) = T̃ (G,S). Then, due to (3.25), the edge

boundaries of the `-neighborhoods of 1 have the same number of edges µ in G̃ and G.
Moreover, we can choose the (arbitrary) enumeration of the boundary of the `-ball

in G̃ such that, for any i 2 [[1, µ]], we have Ti(~Si) 2 Si(G̃). Define

W̃S̃ ⌘ W (G̃, S̃) := {i 2 [[1, µ]] : Ii(G̃, S̃)Ji(G̃, S̃) = 1}.

We claim that W̃S̃ = WS. First, by definition of switchings, we have [Ti(Si)] = [Si]

for any i 2 [[1, µ]]. Thus Ji(G̃, S̃) = Ji(G,S), and it su�ces to verify that Ii(G̃, S̃) =
Ii(G,S) also holds for all i 2 [[1, µ]]. For i 62 WS, the switching of Si does not take

place, i.e., G̃|[S
i

] = G|[S
i

] and therefore Ii(G̃, S̃) = Ii(G,S). On the other hand, for

i 2 WS, the subgraph G|[S
i

] is 1-regular, i.e., Ii(G,S) = 1, and the other Sj with

j 2 WS intersect Si at most at one vertex. Therefore, G̃|[S
i

] = T~S
i

G|[S
i

] and the graph

G̃|[S
i

] is again 1-regular, i.e., Ii(G̃, S̃) = 1 as needed.

In summary, we have verified the claim W̃S̃ = WS. By definition of our switchings,

it follows that T (S̃) = S and TS̃(G̃) = G. Therefore T̃ is an involution. ⇤

Proposition 3.8. T̃ and T are measure preserving: P̃ � T̃�1 = P̃ and P̃ � T�1 = P.

In other words, that T is measure preserving means that if G is uniform over GN,d,

and given G, we choose S uniform over S(G), then TS(G) is uniform over GN,d.
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Proof. We decompose the enlarged probability space according to the `-neighborhood

of 1 as

(3.26) G̃N,d =
[

T

G̃N,d(T ), where G̃N,d(T ) = ◆(GN,d(T )).

Notice that, given any T , the size of the set S(G) is (by construction) independent of

the graph G 2 GN,d(T ). Therefore, given any T , the restricted measure P̃|G̃N,d(T ) is

uniform, i.e., proportional to the counting measure on the finite set G̃N,d(T ). Since, by

Proposition 3.7, the map T̃ is an involution on G̃N,d(T ), it is in particular a bijection

and as such preserves the uniform measure P̃|G̃N,d(T ). Since T̃ acts diagonally in the

decomposition (3.26), this implies that the map T̃ preserves the measure P̃. Since

P = P̃ � ⇡�1 and T = ⇡ � T̃ , it immediately follows that also T is measure preserving:

P̃ � T�1 = P̃ � T̃�1 � ⇡�1 = P̃ � ⇡�1 = P,

as claimed. ⇤

The following general proposition, which makes use of the involution property of

T̃ , is central to our approach. The idea of its proof is illustrated in Figure 6.

Proposition 3.9. Given events ⌦ ⇢ ⌦+ ⇢ ⌦̄ ⇢ GN,d and ⌦0 ⇢ ⌦̄, assume

(i) P(GN,d \ ⌦̄) 6 q0,

(ii) PG(TS(G) 2 ⌦̄ \ ⌦+) 6 q1 for all G 2 ⌦, and

(iii) PG(TS(G) 2 ⌦̄ \ ⌦0) 6 q2 for all G 2 ⌦+.

Then P(⌦ \ (⌦ \ ⌦0)) 6 q0 + q1 + q2.

Roughly, the proposition shows that if, for most graphs G 2 GN,d, an event holds

for the switched graph TS(G) with high probability under the randomness of the

switching S, then it also holds with high probability on GN,d. This enables us to

condition on a (good) graph G for much of the paper, and then only use with the

randomness of S which has a simple probabilistic structure.
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⌦
GN,d

S

⌦̄

⌦̃

◆(⌦)

T T

Figure 6. The figure illustrates the idea of Proposition 3.9. The hor-
izontal axis represents the set of graphs GN,d, and the vertical direction
the fibres of possible switchings. In particular, the sets ⌦, ⌦0, ⌦+, ⌦̄ are
represented on the horizontal axis. The area in medium and dark grey
represents ⌦̃ = T�1(⌦). The sets ⌦0 and ⌦+ and their preimages can
be illustrated analogously, but for simplicity we assume for the figure
that ⌦ = ⌦+. The lightly shaded area bounded by the vertical bars
is ◆(⌦). In (3.28), we devide ⌦̃ \ ⌦̃0 into the part contained in ◆(⌦+)
(the second term) and the part outside of ◆(⌦+) (the first term). The
part inside ◆(⌦+) is small because of assumption (iii). To bound the
part outside ◆(⌦+), we use that T̃ is an involution. This implies that
the image under T̃ of the area in dark gray is contained in ◆(⌦) (thus
its projection to the horizontal axis lies in ⌦ as shown in the figure),
and not intersecting ⌦̃+. Its contribution is small by assumption (ii),
which implies that ◆(⌦) contains most of ⌦̃+.

More specifically, in our application of the proposition, the set ⌦̄ is a large set of

regular graphs obeying rough a priori estimates (there are only few cycles), the set ⌦

is a set of graphs for which the Green’s function obeys good estimates, and the set ⌦0

is a sets of graphs on which the Green’s function obeys better estimates (near a given

vertex). The proposition states that if with respect to the resampling most graphs

obey the better estimates, then these estimates also hold on the original probability

space with high probability. The proposition will be applied in Section 3.11.
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Proof. We define ⌦̃ = T�1(⌦), ⌦̃0 = T�1(⌦0) and ⌦̃+ = T�1(⌦+), and abbreviate

A \B = A \ (A \ B) for any sets A,B. Since

(3.27) T�1(⌦ \ ⌦0) = T�1(⌦) \ T�1(⌦0) = ⌦̃ \ ⌦̃0,

and since T is measure preserving, and since T̃ is a measure preserving involution,

we have

P(⌦ \ ⌦0) = P̃(⌦̃ \ ⌦̃0) = P̃(⌦̃ \ (⌦̃0 [ ◆(⌦+))) + P̃((◆(⌦+) \ ⌦̃) \ ⌦̃0)

6 P̃(⌦̃ \ (⌦̃0 [ ◆(⌦+))) + P̃((◆(⌦+) \ T�1(⌦̄)) \ ⌦̃0)

= P̃(⌦̂) + P̃((◆(⌦+) \ T�1(⌦̄)) \ ⌦̃0),(3.28)

where ⌦̂ = T̃ (⌦̃ \ (⌦̃0 [ ◆(⌦+)). To bound the probability of ⌦̂, we make the following

observations. First, ⌦̂ ⇢ T̃ (⌦̃) ⇢ ◆(⌦). Second, any element (Ĝ, Ŝ) 2 ⌦̂ can be

written as Ĝ = T (G,S) for some G 62 ⌦+ and S 2 S(G). Since T̃ is an involution,

this (G,S) must in fact be given by (G,S) = T̃ (Ĝ, Ŝ). Together this implies that

(Ĝ, Ŝ) 62 ⌦̃+, and thus that ⌦̂ has no intersection with ⌦̃+. As a result,

P(⌦ \ ⌦0) 6 P̃(◆(⌦) \ ⌦̃+) + P̃((◆(⌦+) \ T�1(⌦̄)) \ ⌦̃0)

= P̃(◆(⌦) \ T�1(⌦̄)) + P̃((◆(⌦) \ T�1(⌦̄)) \ ⌦̃+) + P̃((◆(⌦+) \ T�1(⌦̄)) \ ⌦̃0)

6 P̃(T�1(GN,d) \ T�1(⌦̄)) + P̃((◆(⌦) \ T�1(⌦̄)) \ ⌦̃+) + P̃((◆(⌦+) \ T�1(⌦̄)) \ ⌦̃0)

6 q0 + q1 + q2,

where the second inequality follows since GN,d � ⌦ and the last inequality follows

from the assumptions (i)–(iii). ⇤

3.3.3. Boundary of neighborhood T.

Proposition 3.10. Let G be a d-regular graph on [[N ]], assume that BR(1,G) has

excess at most !, and that ` ⌧ R. Then the following hold.
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• After removing T, most boundary vertices of T are isolated from the other

boundary vertices:

|{p 2 [[1, µ]] : 9q 2 [[1, µ]] \ {p}, distG(T)(ap, aq) 6 R/2}| 6 2!.(3.29)

• After removing T, any vertex x 2 [[N ]] \ T can only be close to few boundary

vertices of T:

|{p 2 [[1, µ]] : distG(T)(x, ap) 6 R/2}| 6 ! + 1,(3.30)

|{v 2 T` : distG\T (x, v) 6 R/2}| 6 ! + 1.(3.31)

Notice that the graph G \ T is slightly larger than G(T) because the edges between

the vertices T` and [[N ]] \ T are not removed.

Bound on deficit functions. Finally, we have the following deterministic bound on

the deficit functions for the connected components of the subgraph obtained from

BR(1,G) by removing a set of vertices U.

Proposition 3.11. Let G be a d-regular graph on [[N ]], and assume that B := BR(1,G)
has excess at most !. Then the following hold.

• Let A be the annulus obtained by removing T from B. Then the sum of the

deficit function over any connected component of A satisfies
P

g(v) 6 !+1.

• Given U ⇢ B`(1,G), let B(U) be the subgraph given by removing the vertices U

from B. Then the sum of the deficit function over any connected component

of B(U) satisfies
P

g(v) 6 ! + |U|.

For the above statements, recall that we view A and B(U) as subgraphs of B (which

has zero deficit function) and that their deficit functions are given by our conventions

in Section 2.3.

In the remainder of this section, we prove Propositions 3.10 and 3.11.
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`

1

Figure 7. The two vertices ai which are encircled together are close
in the sense that they are in the same connected component of the
annulus A. Proposition 3.10 shows that, since B has excess at most !,
this happens for at most 2! of the ai. In addition, it shows that any
vertex x outside T can only be close to at most ! + 1 of the ai.

3.3.4. Proof of Proposition 3.10. Abbreviate B = BR(1,G). By assumption the ball

B has excess at most !. Let A be the annulus obtained by removing T from B. We

partition [[1, µ]] into sets {A1, A2, A3, . . . }, such that i and j are in the same set Ak if

and only if ai and aj are in the same connected component of A. We label the sets

Ak such that |A1| > |A2| > . . . > |A↵| > 1 = |A↵+1| = · · · and let ij be a labeling

such that A1 [ · · · [ A↵ = {i1, i2, . . . , i�}.

Lemma 3.12.

(3.32) ↵ 6 !, � 6 2!, |Aj| 6 ! + 1 for all j.

Proof. For any finite graph G, we set

�(G) := #connected components(G)� excess(G) = #vertices(G)�#edges(G),
(3.33)

where the second equality follows from the definition (2.5) of excess(G). In particular,

for any e 2 G, we have �(G \ e) = �(G) + 1.
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As a ball, B has by definition exactly one connected component, and by assumption

it has excess at most !. Thus �(B) > 1 � !. We recall that ei is the edge on the

boundary of T containing ai. Thus the graph B \ {ei1 , . . . , ei
�

} has at most ↵ + 1

connected components: the component containing the vertex 1 and the components

containing the vertices ai with i 2 Aj for some j 2 [[1,↵]]. (Notice for i 2 Aj with

j > ↵, we did not remove the edge ei. Therefore ai is still connected to 1.) Thus

�(B \ {ei1 , . . . , ei
�

}) 6 ↵ + 1. It follows that

1 + ↵ > �(B \ {ei1 , . . . , ei
�

}) = �(B) + � > 1� ! + �,

and thus � 6 ↵ + !. Since, by definition, we have � =
P↵

i=1 |Ai| > 2↵, the first two

inequalities in (3.32) follow. The third inequality is trivial for i > ↵, and for i 6 ↵,

we have

! + ↵ > � =
↵
X

j=1

|Aj| > |Ai|+ 2(↵� 1),

which implies that |Ai| 6 ! � ↵ + 2 6 ! + 1 as claimed. ⇤

Proof of (3.29). By definition, any i, j such that distG(T)(ai, aj) 6 R/2 belong to the

same connected component of A. (Indeed, ai is at distance ` + 1 from the vertex 1

and R � `, and thus BR/2(ai,G) ⇢ B for any i 2 [[1, µ]].) In particular, if the set Ai

containing i has size 1, then for any j 2 [[1, µ]] \ {i}, we have distG(T)(ai, aj) > R/2.

Recalling that � 6 2! is the number of i for which the set Ai containing it has size

greater than 1, the claim (3.29) follows from (3.32). ⇤

Proof of (3.30). The claim is trivial if x 62 B, since we then have distG(T)(x, {a1, a2, . . . , aµ}) >
R � ` > R/2 by definition. Thus assume that x 2 B. Let Aj be such that x

and the vertices ai with i 2 Aj are in the same connected component of A. We

first show that those vertices ap with p 2 Ak where k 6= j do not contribute to

(3.30). Indeed, then x and ap are in the di↵erent connected components of A.

But since BR/2(ap,G) ⇢ B, it then follows that distG(T)(x, ap) > R/2. Therefore
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|{p 2 [[1, µ]] : distG(T)(x, ap) 6 R/2}| 6 |Aj|, and the claim (3.30) follows from the

third inequality in (3.32). ⇤

Proof of (3.31). By the same proof, (3.30) also holds with ` replaced by ` � 1, i.e.,

with T = B`(1,G) replaced by B`�1(1,G), including in Lemma 3.12. This gives

|{v 2 T` : distG(B
`�1(1,G))(x, v) 6 R/2}| 6 ! + 1.

Then claim then follows since G \ T ⇢ G(B
`�1(1,G)). ⇤

3.3.5. Proof of Proposition 3.11.

Proof of Proposition 3.11. For the first statement, viewing the annulus A as a sub-

graph of G(T), the bound (3.32) immediately implies that the sum of deficit function

over any connected component of A satisfies
P

g(v) 6 maxj |Aj| 6 ! + 1.

For the second statement, let k = |U| and write U = {u1, u2, . . . , uk}. Let X ⇢ [[N ]]

be the set of vertices of any given connected component of A. Define

Bi := X \ @ui =
�

vi1, v
i
2, . . . , v

i
|B

i

|
 

, i = 1, 2, . . . , k,

where @u is the set of neighbors of the vertex u in G. Notice that g(v) = 0 unless

v 2 B1 [ · · · [Bk. Thus

(3.34)
X

v2X

g(v) 6
k
X

i=1

X

v2B
k

g(v) 6
k
X

i=1

|Bi| 6 |U|+
k
X

i=1

(|Bi|� 1),

so that the claim follows from

k
X

i=1

(|Bi|� 1) 6 !.(3.35)

To prove (3.35), we consider the graph

H = B \
k
[

i=1

{{ui, v
i
1}, {ui, v

i
2}, · · · , {ui, v

i
|B

i

|�1}}.
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Note that H is obtained from B by removing exactly
Pk

i=1(|Bi|� 1) edges and that

H is connected. Since by assumption B has excess at most !, after removing any

! + 1 edges, it cannot be connected. This implies (3.35). ⇤

3.3.6. Estimates for local resampling. In the following, we give some basic estimates

for the local resampling. In particular, we show that, with high probability, most

edges are switchable.

Proposition 3.13. Let � > 0.

(i) For any x 2 [[N ]] \ T,

(3.36) PG(bi = x) = P(ci = x) 6 2

N
.

(ii) For any positive integer !, we have

(3.37) PG(|WS| > µ� 3!) = 1� o(N�!+�).

Proof. To prove (i), we recall that, for any i, the oriented edge (bi, ci) is uniformly

chosen from the oriented edges of G(T). By definition of T, there are at least Nd/2�
(d + d(d � 1) + · · · d(d � 1)`) edges in G(T), and since for any vertex x 2 G(T), the

degree obeys degG(T)(x) 6 d,

PG(bi = x) = PG(ci = x) 6 d

Nd� 2(d+ d(d� 1) + · · · d(d� 1)`)
6 2

N
.
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To prove (ii), we need to analyze the events IiJi = 0 more carefully. We define the

disjoint sets

A0 = {i 2 [[1, µ]] : Ii = 0},

A1 = {i 2 [[1, µ]] \ A0 : |{bi, ci} \ ([j 6=i[ej])| > 1},

A2 = {i 2 [[1, µ]] \ A0 [ A1 : |{bi, ci} \ ([j 6=i{bj, cj})| > 1},

A3 = {i 2 [[1, µ]] \ A0 [ A1 [ A2 : 9 j such that li = lj and |[ei] \ {bj, cj}| > 1},

and claim that

(3.38) [[1, µ]] \WS = {i 2 [[1, µ]] : IiJi = 0} ⇢ A0 [ A1 [ A2 [ A3.

Indeed, if i 2 [[1, µ]] \ WS, then Ii = 0 or Ji = 0. Clearly, if Ii = 0 then i 2 A0 ⇢
A0[A1[A2[A3. On the other hand, if Ji = 0, there exists some index j 2 [[1, µ]]\{i}
such that |[Si]\ [Sj]| > 1, and there are two possibilities (recall that ei = {li, ai} and

ej = {lj, aj}):

(i) li 6= lj. Then either |{bi, ci} \ {bj, cj}| > 1; or |{bi, ci} \ [ej]| > 1 and

|[ei] \ {bj, cj}| > 1.

(ii) li = lj. Then either |{bi, ci} \ {bj, cj}| > 1; or |{bi, ci} \ [ej]| > 1; or |[ei] \
{bj, cj}| > 1.

Either way, Ji = 0 implies i 2 A1 [A2 [A3, and (3.38) holds. To bound the number

of elements on the right-hand side of (3.38), we first note that |A3| 6 2|A0 [ A1|.
In fact if i 2 A3, then there exists some j such that |[ei] \ {bj, cj}| > 1, and thus

j 2 A0 [ A1. Since any {bj, cj} can intersect at most two edges ei with li = lj,

|A3| 6
X

j2A0[A1

|{i 2 [[1, µ]] : li = lj and |{bj, cj} \ [ei]| > 1}| 6 2|A0 [ A1|.
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Therefore, it follows that

(3.39)

|[[1, µ]] \WS| = |{i 2 [[1, µ]] : IiJi = 0}| 6 3|A0 [ A1|+ |A2| 6 3|A0|+ 3|A1|+ |A2|.

We will show that

(3.40) P(|A0|+ |A1|+ 1
2
|A2| > !) = o(N�!+�),

which implies the claim since

P(|[[1, µ]] \WS| > 3!) 6 P(3|A0|+ 3|A1|+ |A2| > 3!)

6 P(|A0|+ |A1|+ 1
2
|A2| > !) = o(N�!+�).

To prove (3.40), first notice that there is a subset A0
2 ⇢ A2 with |A0

2| > |A2|/2 such

that i 2 A0
2 implies |{bi, ci}\ ([j 62A0

2
{bj, cj})| > 1. Hence, if |A0|+ |A1|+ |A2|/2 > !,

then there exist disjoint index sets Ã0 ⇢ A0, Ã1 ⇢ A1, Ã0
2 = A0

2 such that |Ã0|+ |Ã1|+
|Ã0

2| = ! and

8

>

>

>

>

>

<

>

>

>

>

>

:

8i 2 Ã0, Ii = 0,

8i 2 Ã1, |{bi, ci} \ ([j 6=i[ej])| > 1,

8i 2 Ã0
2, |{bi, ci} \ ([j 62A0

2
{bj, cj})| > 1.

(3.41)

The condition Ii = 0 is equivalent to distG({ai, li}, {bi, ci}) 6 1. Therefore, by (3.36),

PG(Ii = 0) 6 PG(distG({ai, li}, bi) 6 1) + PG(distG({ai, li}, ci) 6 1)(3.42)

6 4

N
#{x 2 G(T) : distG({ai, li}, x) 6 1} 6 8d

N
.(3.43)

Similarly, since | [j [ej]| 6 2µ,

(3.44) PG(|{bi, ci} \ ([j 6=i[ej])| > 1) 6 8µ

N
,
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and, for any i 2 Ã0
2, we have

(3.45) PG

⇣

|{bi, ci} \ ([j 62Ã0
1
{bj, cj}| > 1

�

�

�

~Sj, j 62 Ã0
2

⌘

6 8µ

N
.

Finally, there are at most (3µ)! disjoint sets Ã0, Ã1, Ã0
2 ⇢ [[1, µ]] such that |Ã0| +

|Ã1|+ |Ã0
2| = !, and therefore

PG

⇣

|A0|+ |A1|+ 1
2
|A2| > !

⌘

6 (3µ)! max
Ã0,Ã1,Ã0

2

PG

⇣

the sets Ã0, Ã1, Ã
0
2 satisfy (3.41)

⌘

= (3µ)! max
Ã0,Ã1,Ã0

2

Y

i2Ã0

PG(Ii = 0)
Y

i2Ã1

PG(|{bi, ci} \ ([j 6=i[ej])| > 1)

Y

i2Ã0
2

PG

⇣

|{bi, ci} \ ([j 62Ã0
2
{bj, cj}| > 1

�

�

�

~Sj, j 62 Ã0
2

⌘

6 (3µ)! max
Ã0,Ã1,Ã0

2

Y

i2Ã0

8d

N

Y

i2Ã1

8µ

N

Y

i2Ã0
2

8µ

N
= o(N�!+�),

where the maxima are over all disjoint sets Ã0, Ã1, Ã0
2 ⇢ [[1, µ]] such that |Ã0|+ |Ã1|+

|Ã0
2| = !, and where we used that the probability factorizes since the sets Ã0, Ã1, Ã0

2

are disjoint. ⇤

Remark 3.14. Throughout Sections 3.3.7–3.10, we fix a d-regular graph G 2 GN,d

on the vertex set [[N ]], and abbreviate its `-neighborhood of 1 by

(3.46) T = B`(1,G), T = B`(1,G).

We also write

(3.47) Ti = {v 2 G : distG(1, v) = i},

for the set of vertices at distance i from 1.

Further, we enumerate the boundary edges @ET as {li, ai} for i 2 [[1, µ]], where

li 2 T and ai 2 [[N ]]\T. We denote the resampling data by S = (~S1, ~S2, . . . , ~Sµ), where

~Si = {(li, ai), (bi, ci)} for i 2 [[1, µ]], and (b1, c1), . . . , (bµ, cµ) are chosen independently
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switching

c

b

Kc

Kb

a

Ka

l

Figure 8. For the vertices x 2 {ai, bi, ci} participating in the switch-
ing, we denote by Kx their radius-R/4 neighborhoods in the unswitched
graph, with bi and ci disconnected and the set T removed. The typical
Kx are disjoint from the other Kx, and in the typical case, the sets Ka

and Kc exchange their roles under switching.

and uniformly among oriented edges from the graph G(T). We denote by S(G) the

set of all possible switching data, so that S is uniformly distributed on S. Given

switching data S, we denote the set of admissible switchings by WS. Without loss

of generality, we will assume for notational convenience that WS = {1, 2, 3, . . . , ⌫}
where |WS| = ⌫ 6 µ.

To study the change of graphs before and after local resampling, we define the

following graphs (which need not be regular).

• G is the original unswitched graph;

• G(T) is the unswitched graph with vertices T removed;

• Ĝ(T) is the intermediate graph obtained from G(T) by removing the edges

{bi, ci} with i 2 WS;

• G̃(T) is the switched graph obtained from Ĝ(T) by adding the edges {ai, bi} with

i 2 WS; and

• G̃ is the switched graph TS(G) (including vertices T).

Following the conventions of Section 2.3, the deficit functions of these graphs are

given by d � deg, where deg is the degree function of the graph considered, and we

abbreviate their Green’s functions by G, G(T), Ĝ(T), G̃(T), and G̃ respectively.
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3.3.7. Graph distance between switched vertices. This section provides estimates on

the distances between the vertices participating in the switching, in the graph with

vertices T removed (before and after switching).

It can be helpful to think about these estimates in terms of the sets Kx ⇢ [[N ]] \ T
defined by

(3.48) Ka
i

= BR/4(ai,G(T)), Kx
i

= BR/4(xi,G(T) \ {{bi, ci}}), where xi 2 {bi, ci},

and illustrated in Figure 8. In (3.29), (3.30), it is shown that

• (3.29) except for at most 2! many, the Ka does not intersect the other Ka.

• (3.30) any x 2 [[N ]] \ T is in at most ! + 1 many of the sets Ka.

Roughly speaking, in this section it is shown that, for any graph G 2 ⌦̄, the following

estimates hold with high probability under PG:

• (3.49) any x 2 [[N ]] \ T is in at most ! of the sets Kb;

• (3.50) any Ka intersects at most ! of the Kb;

• (3.51) any Kb intersects at most 2! of the other Ka,Kb;

• (3.52) except for at most ! many, the Kb are trees.

By symmetry, the same statements hold with b replaced by c. More precisely, in

the remainder of this section, we show that the estimates stated in the following

propositions hold.

Proposition 3.15. For any graph G 2 ⌦̄ (as in Section 3.1.2), the following holds

with PG-probability at least 1� o(N�!+�):

• Any vertex x 2 [[N ]] \ T is far away from most vertices in {b1, b2, . . . , bµ}:

|{i 2 [[1, µ]] : distG(T)(x, bi) 6 R/2}| < !.(3.49)
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• Most indices i 2 [[1, µ]] are good:

|Ba| < 3!, with Ba = {i 2 [[1, µ]] : distG(T)(ai, {aj, bk : j 2 [[1, µ]] \ {i}, k 2 [[1, µ]]}) 6 R/2},
(3.50)

|Bb| < 2!, with Bb = {i 2 [[1, µ]] : distG(T)(bi, {aj, bk : j 2 [[1, µ]], k 2 [[1, µ]] \ {i}}) 6 R/2},
(3.51)

|Bc| < !, with Bc = {i 2 [[1, µ]] : BR(ci,G(T)) is not a tree }.
(3.52)

Note that Ba is the set of indices i such that Ka
i

is not disjoint from all sets other

Ka and Kb, and that Bb is the set of indices i such that Kb
i

is not disjoint from all

other sets Kb and Ka.

We will show that the estimates (3.50) and (3.51) also imply the following estimates

for the switched graph G̃(T).

Proposition 3.16. Assume (3.50) and (3.51).

• For any index i 2 [[1, µ]] \ (Ba [ Bb),

distG̃(T)({ai, bi}, {aj, bj : j 2 [[1, µ]] \ {i}}) > R/2.(3.53)

• For any vertex x 2 [[N ]] \ T,

|{i 2 [[1, µ]] : distG̃(T)(x, {ai, bi}) 6 R/4}| 6 5!.(3.54)

The remainder of this section is devoted to the proofs of Propositions 3.15–3.16.

3.3.8. Proof of Proposition 3.15. Recall that the oriented edges (bi, ci) are indepen-

dent and distributed approximately uniformly, so that (3.36) holds. The claims es-

sentially follow from this.
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Proof of (3.49). In any graph with degree bounded by d, the number of vertices at

distance at most R/2 from vertex x is bounded by 1+d+d(d�1)+· · ·+d(d�1)R/2�1 6

2(d� 1)R/2. By (3.36) therefore

(3.55) PG(distG(T)(x, bi) 6 R/2) 6 4(d� 1)R/2

N
.

Since the b1, . . . , bµ are independent, it therefore follows that

P (|{i 2 [[1, µ]] : distG(T)(x, bi) 6 R/2}| > !) 6
✓

µ

!

◆✓

4(d� 1)R/2

N

◆!

⌧ N�!+�,

where, in the last inequality, we used that (4(d�1)R/2µ)! 6 23!(d�1)(R/2+`+1)! ⌧ N �

by the choice of parameters in Section 3.1. ⇤

Proof of (3.50). Recall the annulus A, and sets A1, A2, . . . from Lemma 3.12. By

(3.32), |A1 [ · · ·[A↵| 6 2!, and for any i 2 A↵+1 [A↵+2 [ · · · , ai is at least distance
R in G(T) from other vertices aj. It follows that

PG (|{i 2 [[1, µ]] : distG(T)(ai, {aj, bk : j 2 [[1, µ]] \ {i}, k 2 [[1, µ]]})}| 6 R/2} > 3!)

6 PG (|{i 2 A↵+1 [ A↵+2 [ · · · : distG(T)(ai, {b1, b2, . . . , bµ})}| 6 R/2} > !) .

By a union bound, the right-hand side is bounded by

X

A0,B0

PG (distG(T)(ai1 , bj1) 6 R/2, . . . , distG(T)(ai
!

, bj
!

) 6 R/2) ,

where A0 = {i1, . . . , i!}, B0 = {j1, . . . , j!}, and the sum over A0 runs through the

subsets of A↵+1 [A↵+2 [ · · · with |A0| = !, the sum over B0 runs through subsets of

[[1, µ]] with |B0| = !. Notice that if ak and am are in di↵erent connected components

of A, then distG(T)(ak, bi) 6 R/2 and distG(T)(am, bj) 6 R/2 imply bi and bj are

in di↵erent connected components of A (those of ak and am, respectively), and in

particular then bi 6= bj. As a consequence, the indices j1, . . . j! must be distinct, and

in particular the random variables bj1 , . . . , bj! are independent. Thus the previous
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expression is bounded by

X

A0,B0

PG (distG(T)(ai1 , bj1) 6 R/2) · · ·PG(distG(T)(ai
!

, bj
!

) 6 R/2)

6
✓

µ

!

◆2✓4(d� 1)R/2

N

◆!

⌧ N�!+�,

where we used that there are
�

µ
!

�

choices for A0 and B0 respectively, and the estimate

(3.55) with x = ai1 , . . . , ai! . ⇤

Proof of (3.51). Similarly, to prove (3.51), by the union bound we have

PG (|{i 2 [[1, µ]] : distG(T)(bi, {aj, bk : j 2 [[1, µ]], k 2 [[1, µ]] \ {i}}) 6 R/2}| > 2!)

6
X

B0

PG (8i 2 B0, distG(T)(bi, {aj, bk : j 2 [[1, µ]], k 2 [[1, µ]] \ {i}}) 6 R/2) ,

where B0 runs through all subsets of [[1, µ]] with |B0| = 2!. Next, we notice that,

if for all i 2 B0, we have distG(T)(bi, {aj, bk : j 2 [[1, µ]], k 2 [[1, µ]] \ {i}}) 6 R/2,

then there must be subset B00 ⇢ B0 with |B00| = ! such that for all i 2 B00, we have

distG(T)(bi, {aj, bk : j 2 [[1, µ]], k 2 [[1, µ]] \ B00}) 6 R/2. By relabeling, without loss

of generality, we assume that B00 = {µ� ! + 1, µ� ! + 2, . . . , µ}. Conditioned on

~S1, ~S2, . . . , ~Sµ�!, we have

PG

⇣

dist(bi, {a1, a2, . . . , aµ, b1, b2, . . . , bµ�!}) 6 R/2
�

�

�

~S1, ~S2, . . . , ~Sµ�!

⌘

6 8µ(d� 1)R/2/N,

for any i 2 [[µ� ! + 1, µ]]. Therefore,

X

B0

PG (8i 2 B0, distG(T)(bi, {aj, bk : j 2 [[1, µ]], k 2 [[1, µ]] \ {i}}) 6 R/2)

6
X

B00

PG (8i 2 B00, distG(T)(bi, {aj, bk : j 2 [[1, µ]], k 2 [[1, µ]] \B00}) 6 R/2)

6
✓

µ

!

◆✓

8µ(d� 1)R/2

N

◆!

⌧ N�!+�.

since there are
�

µ
!

�

choices for B00. This completes the proof. ⇤
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Proof of (3.52). By the assumption G 2 ⌦̄, all except at most N � many vertices have

radius-R tree neighborhoods. In particular, the same holds for G(T). By (3.36), it

follows that

PG (the radius-R neighborhood of ci contains cycles) 6 2N�1+�.

By the union bound, and using that the number of ways to choose ! + 1 elements

from µ elements is bounded from above by µ!+1,

PG (|{i 2 [[1, µ]] : radius-R neighborhood of ci contains cycles}| > ! + 1)

6 µ!+1(2N�1+�)!+1 6 (2µ)!+1N�!�1+(!+1)� ⌧ N�!+�,

given that � < 1/! and using that µ 6 2(d � 1)`+1 = (logN)O(1) by the choice of

parameters in Section 3.1. ⇤

3.3.9. Proof of Proposition 3.16.

Proof of (3.53). By the definition of the sets Ba and Bb, for any i 2 [[1, µ]]\ (Ba[Bb),

we have

distG(T)({ai, bi}, {aj, bj : j 2 [[1, µ]] \ {i}) > R/2.(3.56)

Since G̃(T) is obtained from G(T) by removing the edges {bi, ci}i6⌫ and adding the

edges {ai, bi}i6⌫ , the claim (3.53) directly follows from (3.56). ⇤

Proof of (3.54). We consider three cases. If distG̃(T)(x, {ai, bi}) > R/4 for all i 2
[[1, µ]], then the claim is trivial. If distG̃(T)(x, {ai, bi}) 6 R/4 for some i 2 [[1, µ]]\ (Ba[
Bb), then (3.53) implies that

distG̃(T)(x, {aj, bj}) > distG̃(T)({ai, aj}, {aj, bj})� distG̃(T)(x, {ai, bi}) > R/2�R/4 = R/4,



62

for any j 2 [[1, µ]] \ {i}. Thus |{i 2 [[1, µ]] : distG̃(T)(x, {ai, bi}) 6 R/4}| = 1 6 5!

as claimed. In the remaining case, distG̃(T)(x, {ai, bi}) 6 R/4 is only possible for

i 2 Ba [ Bb. Therefore |{i 2 [[1, µ]] : distG̃(T)(x, {ai, bi}) 6 R/4}| 6 |Ba [ Bb| 6 5! as

claimed. ⇤

3.4. The Green’s function distance and switching cells. The bounds provided

in the Section 3.3.7 provide accurate control for distances at most R/2. However,

random vertices are typically much further from each other, we require stronger upper

bounds on the Green’s function for such large distances. These bounds are in fact a

general consequence of the Ward identity,

(3.57)
X

j

|Gij(z)|2 = Im[Gii(z)]

Im[z]
,

which holds for the Green’s function of any symmetric matrix (see (B.6)). To make

use of it, we introduce a much coarser measure of distance in terms of the size of the

Green’s function as follows.

3.4.1. Definition. Given a parameter M > 0 (ultimately chosen in (3.60) below), we

define a relation ⇠ on [[N ]] \ T by setting x ⇠ y if and only if

(3.58) max
u:dist(x,u)64r,
v:dist(y,v)64r

|G(T)
uv (z)| >

Mp
N⌘

,

where the distance in the maximum is with respect to the graph G(T), and ⌘ = Im[z].

The relation ⇠ induces a graphR on the vertices {a1, . . . , aµ, b1, . . . , b⌫}. We partition

{a1, . . . , aµ, b1, . . . , b⌫} into its ⇠-clusters. More precisely, we define I1 to be the

vertex set consisting of the union of the connected components of R containing any

element of {a1, a2, . . . , aµ}, and we define I2, . . . , I be the vertex sets of the remaining

connected components of R.

Definition 3.17 (Cells).
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Figure 9. The S-cells are clusters of vertices that are close to one of
the edges {bi, ci} in the sense of the Green’s function distance ⇠. The
S-cell S1 contains all ai (the vertex boundary of T in the original graph)
as well as those bi which are close to any of the ai in the sense of the
Green’s function distance. Since the switching may decrease distances
between vertices, the S0-cells are defined by joining the S-cells which
have vertices that are close to each other.

• Define sets S1, S2, . . . , S ⇢ [[1, N ]] called S-cells by

Si = B2r(Ii,G(T)).(3.59)

For any vertex x 2 [[N ]]\T, we write x ⇠ Si if there is y 2 Ii such that x ⇠ y.

• Define S0
1, . . . , S0

0 ⇢ [[1, N ]] called S0-cells by combining the S-cells which are

close to each other after switching: we set S0
1 = S1 and join S-cells Si and Sj

with i, j > 1 if distG̃(T)(Si, Sj) 6 2r.

The S- and S0-cells are illustrated in Figure 9. The S-cells are defined in terms

of the unswitched graph. In the switching process, distances between S-cells may

decrease. This is accounted for by the coarser S0-cells. For later use, we note the

following elementary properties of S-cells:

• For any x 2 Si and y 2 Sj such that i 6= j we have |G(T)
xy | < M/

p
N⌘.

• For any vertex x 2 [[N ]] \T, if x 6⇠ Si, then for any y 2 Si, |G(T)
xy | < M/

p
N⌘.

• If bk 2 Si, then also ck 2 Si; and, consequently, if bk 2 S0
i then ck 2 S0

i.
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3.4.2. Estimates. From now on, we fix the parameters M and !0 by

(3.60) M = d9`(logN)�, !0 = blogNc,

where � > 0 was fixed at the beginning of Section 3. The next proposition shows

that the cells do not cluster.

Proposition 3.18. For any graph G 2 ⌦+
1 (z, `) (as in Section 3.1.2), with probabililty

at least 1� o(N�!+�) under S, the following estimates hold:

• Any x 2 [[N ]] \ T is ⇠-connected to fewer than !0 of {b1, b2, . . . , bµ},

|{i 2 [[1, µ]] : x ⇠ bi}| < !0.(3.61)

In particular, x is ⇠-connected to at most !0 of the S-cells.

• Except for at most !0 many indices i, the vertex bi is a singleton in the graph

R, and thus the S-cell containing bi is disjoint from {aj, bk : j 2 [[1, µ]], k 2
[[1, µ]] \ {i}}:

|{i 2 [[1, µ]] : bi ⇠ {aj, bk : j 2 [[1, µ]], k 2 [[1, µ]] \ {i}}}| < !0.(3.62)

In particular, each S-cell contains at most !0 of {b1, b2, . . . , bµ}.
• Most S0-cells are far from the other vertices participating in the switching:

|{i 2 [[1, ⌫]] : bi 2 S0
j, such that j = 1 or

dist(S0
j, {ak, bm, cm : k 2 [[1, µ]] \ {i},m 2 [[1, ⌫]] \ {i}}) 6 R/4}| < !0 + 5!.

(3.63)

In particular, each S0-cell contains at most !0 + 5! of {b1, b2, . . . , b⌫}.

In the remainder of this section, we prove the above proposition. It is essentially

a straightforward consequence of the definitions, combined with union bounds.

3.4.3. Proof of Proposition 3.18. The following two lemmas collect some elementary

properties of the Green’s function graph R on {a1, . . . , aµ, b1, . . . , bµ} that we require.
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Lemma 3.19. Let G 2 ⌦+
1 (z, `) (as in Section 3.1.2) and x, y 2 [[N ]] \ T. Then we

have x 6⇠ y implies distG(T)(x, y) > 8r.

Proof. We show that distG(T)(x, y) 6 8r implies x ⇠ y. Assume that distG(T)(x, y) 6

8r. Then there must be a vertex u such that distG(T)(x, u) 6 4r and distG(T)(y, u) 6 4r.

Moreover, by the definition (3.11) of ⌦+
1 (z, `) and estimate (2.13), also |G(T)

uu (z)| >
|msc(z)|/2 > M/

p
N⌘, and thus x ⇠ y. ⇤

Lemma 3.20. Let G 2 ⌦+
1 (z, `) (as in Section 3.1.2) and x 2 [[N ]] \ T. Then

(3.64) PG(bi ⇠ x) 6 16(d� 1)8r/M2.

Proof. G 2 ⌦+
1 (z, `) and (2.13) imply that Im[G(T)

xx ] 6 |G(T)
xx | 6 2. Thus the Ward

identity (B.6) implies

X

i

|G(T)
xi |2 = Im[G(T)

xx ]/⌘ 6 2/⌘.(3.65)

For any vertex x 2 [[N ]] \ T, set

Ṽx :=
n

i 2 [[N ]] \ T : |G(T)
xi | > M/

p

N⌘
o

,

Vx :=

8

<

:

i 2 [[N ]] \ T : distG(T)

0

@i,
[

j2B4r(x,G(T))

Ṽj

1

A 6 4r

9

=

;

.

The inequality (3.65) implies |Ṽx| 6 2N/M2, and since any vertex has at most

2(d�1)4r vertices in its radius-4r neighborhood, we also have |Vx| 6 8(d�1)8rN/M2.

Moreover, i 62 Vx implies that i 6⇠ x. Thus

PG(bi ⇠ x) 6 PG(bi 2 Vx) 6
2

N
|Vx| 6 16(d� 1)8r/M2,

where the second inequality holds because bi is approximately uniform (3.36). ⇤
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Proof of (3.61). The proof is similar to that of (3.49). By the union bound and

(3.64), we have

P(|{i 2 [[1, µ]] : bi ⇠ x}| > !0) 6
✓

µ

!0

◆✓

16(d� 1)8r

M2

◆!0

6 (logN)�� logN ⌧ N�!,

where, in the second inequality, we used
�

µ
!0

�

6 µ!0
and that

16µd8r/M2 6 16d`+1d17`d�18`(logN)�2�

since µ 6 d`+1 and by the definition of M (3.60). ⇤

Proof of (3.62). The proof is similar to that of (3.51). Indeed, by the union bound

and (3.64),

PG (|{i 2 [[1, µ]] : bi ⇠ {aj, bk : j 2 [[1, µ]], k 2 [[1, µ]] \ {i}}}| > !0)

6
✓

µ

!0/2

◆✓

16(d� 1)8rµ

M2

◆!0/2

6 (logN)�� logN/2 ⌧ N�!,

as needed. ⇤

Proof of (3.63). Recall the index sets Ba,Bb ⇢ [[1, µ]] from (3.50), (3.51), and let

i 62 Ba [ Bb be such that bi 6⇠ {ak, bm : k 2 [[1, µ]],m 2 [[1, ⌫]] \ {i}}. Denote the S-cell

containing bi by S; then S is not S1 and it is disjoint from {bk : k 2 [[1, µ]] \ {i}}.
By the definition of Ba, Bb and since bj and cj are adjacent in G(T) we have

distG(T)({ai, bi, ci}, {ak, bm, cm : k 2 [[1, µ]] \ {i},m 2 [[1, ⌫]] \ {i}}) > R/2� 2.(3.66)

Since the graph G̃(T) is obtained from G(T) by removing edges {bj, cj}j6⌫ and adding

edges {aj, bj}j6⌫ , we also have

distG̃(T)({ai, bi, ci}, {ak, bm, cm : k 2 [[1, µ]] \ {i},m 2 [[1, ⌫]] \ {i}}) > R/2� 2.(3.67)
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Moreover, for any other S-cell Sj 6= S, S1, we have

distG̃(T)(S, Sj) > �2r + distG̃(T)(bi, Ij)� 2r > R/2� 2� 4r > 2r,

where we used (3.67), r ⌧ R and the definition (3.59) of S-cells, i.e. S = B2r(bi,G(T))

and Sj = B2r(Ij,G(T)). Thus S is a S0-cell itself, and

distG̃(T)(S, {ak, bm, cm : k 2 [[1, µ]] \ {i},m 2 [[1, ⌫]] \ {i}})

> distG̃(T)(bi, {ak, bm, cm : k 2 [[1, µ]] \ {i},m 2 [[1, ⌫]] \ {i}})� 2r > R/2� 2r � 2 > R/4,

where we used r ⌧ R. Therefore, only i 2 Ba [ Bb or bi ⇠ {ak, bm : k 2 [[1, µ]],m 2
[[1, ⌫]] \ {i}} contribute to the statement (3.63). Thus, combining (3.62) with the

estimate |Ba [ Bb| 6 5! from (3.50), (3.51), and with (3.62), the estimate (3.63)

follows. ⇤

3.5. Stability under removal of a neighborhood. The following deterministic

estimate shows that removing the neighborhood T from the graph G has a small e↵ect

on the Green’s function in the complement of T.

Proposition 3.21. Let z 2 C+ and
p
d� 1 > (! + 1)222!+10, and let G 2 ⌦̄ (as in

Section 3.1.2) be a graph such that, for all i, j 2 [[N ]],

|Gij � Pij(Er(i, j,G))| 6 |msc|qr.(3.68)

Then, for all vertices i, j 2 [[N ]] \ T, we have

(3.69) |G(T)
ij � Pij(Er(i, j,G(T)))| 6 2|msc|qr.

As discussed in Section 3.1, the removal of T is useful because our switchings have

a smaller e↵ect in G(T) than they do in G. Indeed, in the original graph G, our

switchings have the e↵ect of removing two edges and adding two edges, while in G(T)

our switchings only remove the edges {bi, ci}i6⌫ and add the edges {ai, bi}i6⌫ . In the
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next few sections, we therefore work with G(T) and its switched version G̃(T), and only

return to the full graph in Section 3.8.

The remainder of this section is devoted to the proof of the proposition. The main

ingredients are that (i) given any i, j, there can only be a few vertices in T that are

close to i or j, by the deterministic assumption on the excess of R-neigborhoods,

and (ii) that for all other vertices in T, the decay of the Green’s function implied by

(3.68) shows that the removal of them has a small e↵ect.

3.5.1. Step 1: Removal of vertices close to i or j. From (3.47), recall that T` = {v 2
G : distG(1, v) = `} is the set of inner vertex boundary of T . The first step of the

proof of Proposition 3.21 consists of removing the vertices in T` that are close to i or

j. The set of such vertices is

(3.70) U = {v 2 T` : distG\T (i, v) 6 r} [ {v 2 T` : distG\T (j, v)} 6 r},

where G \T is obtained from G by removing the subgraph T induced by G on T (but

not removing T`). Then |U| 6 2! + 2 by (3.31). The following proposition shows

that the Green’s function remains to be locally approximated after removing U.

Proposition 3.22. Under the assumptions of Proposition 3.21, for any vertex set

U ⇢ T with |U| 6 2! + 2,

(3.71) |G(U)
ij � Pij(Er(i, j,G(U)))| 6 3|msc|qr/2.

The proof of Proposition 3.22 follows a general structure that occurs repeatedly in

similar estimates throughout the paper.

(i) The first ingredient in this structure, which we refer to as localization, replaces

the Green’s function Pij(Er(i, j,G)) of the vertex-dependent graph Er(i, j,G)
by the Green’s function Pij = Pij(G0) of a graph G0 that does not depend on
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Er(i, j,G)

1

3r

j

i

Figure 10. The innermost disk shows T, the second largest disk the
set X, and the outermost disk G0. For any i, j 2 X, the graph Er(i, j,G)
is contained in G0.

i, j, by an application of Remark 2.8. For this, among other things, we need

to verify the assumptions of Proposition 3.22.

(ii) The second ingredient, which we refer to as the starting point for the argu-

ment, is an algebraic relation that expresses the quantity to be estimated

in a convenient form. The starting point typically follows from the Schur

complement formula or the resolvent formula.

(iii) The third ingredient is a collection of previously established estimates re-

quired to estimate the expressions given by the starting point. It typically

includes estimates on elements of Green’s functions and graph distances.

The actual proofs then usually follow by combination of the above ingredients. In

principle, this step is straightforward, but often several di↵erent cases need to be

distinguished, which makes some of the arguments appear somewhat lengthy.

Below we provide the first instance of the strategy described above to prove Propo-

sition 3.22.
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Localization. We approximate Pij(Er(i, j,G)) by a vertex independent Green’s func-

tion Pij according to Remark 2.8, applied with G0 = B3r(1,G) and X = B2r(U,G).
We abbreviate

G1 = TE(G0), P = G(G1), G(U)
1 = TE(G(U)

0 ), P (U) = G(G(U)
1 ).

Verification of assumptions in Proposition 2.7. As subgraphs of G 2 ⌦̄, the radius-

R neighborhoods of G0 and G(U)
0 have excess at most !. By convention, the deficit

function of G0 vanishes, on each connected component of G(U)
0 , the deficit function of

G(U) obeys
P

g(v) 6 ! + (2! + 2) 6 8!, by Proposition 3.11. Thus the assumptions

for (2.14) are verified for both graphs, and for any i, j 2 X,

�

�Pij(Er(i, j,G))� Pij

�

� 6 22!+3|msc|qr+1,
�

�Pij(Er(i, j,G(U)))� P (U)
ij

�

� 6 22!+3|msc|qr+1

(3.72)

provided that
p
d� 1 > 2!+2.

Starting point. To remove U, we apply the Schur complement formula (B.4): for any

i, j 2 G(U),

Gij �G(U)
ij =

X

x,y2U

Gix(G|U)�1
xyGyj,

Pij � P (U)
ij =

X

x,y2U

Pix(P |U)�1
xy Pyj.

(3.73)

Our goal is to show that the di↵erence G(U)
ij �P (U)

ij is small, by using that the di↵erence

of G and P is small. As evident from the right-hand sides of (3.73), for this we require

upper bounds on the entries of G and (G|U)�1 (and analogously for P and (P |U)�1).
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Green’s function estimates. By assumption (3.68) and (2.12)–(2.13), we have

8

>

>

>

>

>

<

>

>

>

>

>

:

|Gxx| > |md|� |msc|/4� |msc|qr > 3|msc|/5,

|Gxw| 6 2!+2|msc|q + |msc|qr (x 6= w),

|Gxw| 6 |msc|qr (distG(x, w) > r).

(3.74)

These bounds imply the upper bounds for the entries of (G|U)�1 stated in the

following claim. The claim essentially follows from the fact that the o↵-diagonal

entries of G|U are much smaller than the diagonal entries which have size roughly

msc.

Claim 3.23. Under the assumptions of Proposition 3.21, for any U ⇢ T with |U| 6
2! + 2, and any x, y 2 U,

(3.75) |(G|U)�1
xy | 6 2/|msc|, |(P |U)�1

xy | 6 2/|msc|.

Proof. By the identity G|U(G|U)�1 = IU⇥U, we have

�xy = Gxx(G|U)�1
xy +

X

w2U\{x}

Gxw(G|U)�1
wy.(3.76)

Let � := maxx,y2U |(G|U)�1
xy |. Then (3.74) and (3.76) imply

|Gxx||(G|U)�1
xy | 6 �xy +

X

w2U\{x}

|Gxw|� 6 1 + (2!+2q + qr)|U||msc|�.

Taking the maximum over x, y 2 U in the equation above and using (3.74) gives

� 6 5

3|msc| +
5

3
(2!+2q + qr)|U|� 6 5

3|msc| +
�

6
,

provided that
p
d� 1 > (! + 1)2!+6. � 6 2/|msc| follows by rearranging. The same

argument applies to P |U, and we obtain (3.75). ⇤
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Proof of Proposition 3.22. First consider the case that at least one of i and j is not in

X (i.e. far from U). Then Er(i, j,G) = Er(i, j,G(U)), and (3.71) follows directly from

|Gij �G(U)
ij | =

�

�

�

�

�

X

x,y2U

Gix(G|U)�1
xyGyj

�

�

�

�

�

6 (2!+2q + qr)qr|U|2|msc|2(2/|msc|) 6 |msc|qr/2,

where we used (3.74), (3.75) and that
p
d� 1 > (! + 1)22!+7.

Next consider the main case i, j 2 X. By (3.72), it su�ces to bound the right-hand

side of

|G(U)
ij � P (U)

ij | 6 |Gij � Pij|+
X

x,y2U

�

�Gix(G|U)�1
xyGyj � Pix(P |U)�1

xy Pyj

�

� ,(3.77)

which follows from taking di↵erence of expressions in (3.73). By (3.68) and (3.72),

since for all vertices i, j 2 X and x, y 2 U ⇢ T, we have Er(i, j,G), Er(i, x,G), Er(y, j,G), Er(x, y,G) ⇢
G0,

|Gij � Pij|, |Gix � Pix|, |Gyj � Pyj|, |Gxy � Pxy| 6 |msc|qr + 22!+3|msc|qr+1.(3.78)

Together with (3.75) and the resolvent formula (B.1), it follows that

(3.79)

|(G|U)�1
xy � (P |U)�1

xy | = |[(G|U)�1(G|U � P |U)(P |U)�1]xy| 6 4|U|2(1 + 22!+3q)qr/|msc|.

Using (3.74), (3.75), (3.78), and (3.79), the sum on the right-hand side of (3.77) is

bounded by

X

x,y2U

⇣

|Gix � Pix| |(G|U)�1
xyGyj|+ |Pix(P |U)�1

xy ||Gyj � Pyj|+ |Pix| |(G|U)�1
xy � (P |U)�1

xy ||Gyj|
⌘

6 4|msc|qr(1 + 22!+3q)
�|U|2(2!+2q + qr) + |U|4(2!+2q + qr)2

�

6 |msc|qr/4
(3.80)

where we used that
p
d� 1 > (! + 1)222!+10. The claim follows by combining this

bound for (3.77) with (3.72). ⇤
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3.5.2. Step 2: Estimate of G(T)
ij using G(U)

ij . Next we pass from G(U)
ij to G(T)

ij . By

definition of U, there are no vertices in T \ U that are close to i or j in the graph

G(T). Thus the step mostly follows from the decay of the Green’s function together

with the assumption that there are few cycles.

Starting point. Define G0 = B3r(1,G) and G1 = TE(G0) as in Section 3.5.1. The

normalized adjacency matrices of G(U) and G(U)
1 = TE(G(U)

0 ) have the block matrix

form

2

4

H(U) B0

B D

3

5 ,

2

4

H(U) B0
1

B1 D1

3

5 ,

where H(U) is the normalized adjacency matrix of T (U). The nonzero entries of B

and B1 occur for the indices (i, j) 2 {a1, . . . , aµ}⇥ T` \U and take values 1/
p
d� 1.

Notice that B̃ij = (B̃1)ij. We denote the normalized Green’s functions of G(U) and

G(U)
1 by G(U) and P (U) respectively. By the Schur complement formula (B.4), for any

i, j 2 [[N ]] \ T,

G(T)
ij = (D � z)�1

ij = G(U)
ij �

X

x,y2T\U

G(U)
ix (G(U)|T\U)�1

xyG
(U)
yj ,(3.81)

and also

(P (U)|T\U)�1 =H(U) � z � B0
1(D1 � z)�1B1,(3.82)

(G(U)|T\U)�1 =H(U) � z � B0(D � z)�1B.(3.83)

Claim 3.24. For any x 2 T` \ U,

(3.84)
X

y2T\U

|(P (U)|T\U)�1
xy | 6 2(|z|+ 1).



74

Proof. For any x 2 T` \ U, by (3.82) we have

X

y2T\U

|(P (U)|T\U)�1
xy | =

X

y2T\U

|(H(U) � z � B0
1(D1 � z)�1B1)xy|

6
X

y2T\U

H(U)
xy + |z|+

X

y2T\U

|(B0
1(D1 � z)�1B1)xy|

6 ! + 1p
d� 1

+ |z|+
X

y2T\U

|(B0
1(D1 � z)�1B1)xy|.(3.85)

In the last inequality, we used that the excess of T (U) is at most ! so that for any

x 2 T` \ U, we have degT (U)(x) 6 ! + 1 and thus
P

y2T\U H
(U)
xy 6 (! + 1)/

p
d� 1.

The terms in the last sum in (3.85) vanish unless y 2 T` \ U. Therefore the sum is

bounded by

X

i2[[1,µ]]
l

i

=x

(B0
1)liai |(D1 � z)�1

a
i

a
i

|(B1)a
i

l
i

+
X

i 6=j2[[1,µ]]
l

i

,l

j

2T
`

\U

(B0
1)liai |(D1 � z)�1

a
i

a
j

|(B1)a
j

l
j

6 1

d� 1

X

i2[[1,µ]]

1x=l
i

|(D1 � z)�1
a
i

a
i

|+ 1

d� 1

X

i 6=j2[[1,µ]]

|(D1 � z)�1
a
i

a
j

|.(3.86)

For the first sum in (3.86), the number of vertices ai adjacent to x is at most d� 1.

For the second sum, by (3.29), for all pairs i 6= j with at most (2!)2 exceptions,

distG(T)(ai, aj) > R/2. For these pairs, ai and aj are in di↵erent connected components

of the graph G(T)
1 which means that |(D1 � z)�1

a
i

a
j

| = 0. Therefore there are at most

(2!)2 non-vanishing terms in the second sum. We use also that

|(D1 � z)�1
a
i

a
j

| = Pa
i

a
j

(TE(G(T)
0 )) 6 3|msc|/2,

which follows from (2.15), provided that
p
d� 1 > 22!+3. Therefore,

(3.87) (3.86) 6
✓

1 +
(2!)2

d� 1

◆

max
i,j2[[1,µ]]

|(D1 � z)�1
a
i

a
j

| 6 3

2
|msc|

✓

1 +
(2!)2

d� 1

◆

,
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By combining (3.85) and (3.87), we have shown that

X

y2T\U

|(P (U)|T\U)�1
xy | 6

! + 1p
d� 1

+ |z|+ 3

2
|msc|

✓

1 +
(2!)2

d� 1

◆

6 2(|z|+ 1),

provided that
p
d� 1 > 8(! + 1). This completes the proof. ⇤

Claim 3.25. For any x, y 2 T \ U,

|G(U)
xy � P (U)

xy | 6 2|msc|qr,(3.88)

|G(U)|T\U)�1
xy � (P (U)|T\U)�1

xy | 6 48(|z|+ 1)qr,(3.89)

Proof. Define matrices W and E by

G(U)|T\U = P (U)|T\U +W ,(3.90)

(G(U)|T\U)�1 = (P (U)|T\U)�1 + E .(3.91)

From (3.71), (3.72), for any x, y 2 T \ U, we have |Wxy| 6 2|msc|qr. We claim the

same estimate holds for the entries of the matrix E . Notice from (3.82), (3.83) that

Exy 6= 0 only for x, y 2 T` \ U. Let � := maxx,y2T\U |Exy| = maxx,y2T
`

\U |Exy|. By

taking the product of (3.90) and (3.91),

E + (P (U)|T\U)�1WE + (P (U)|T\U)�1W(P (U)|T\U)�1 = 0.(3.92)

For any x, y 2 T \ U, therefore

|Exy| 6
X

i,j2T\U

|(P (U)|T\U)�1
xi ||Wij||Ejy|+

X

i,j2T\U

|(P (U)|T\U)�1
xi ||Wij||(P (U)|T\U)�1

jy |

6 |T \ U|(2|msc|qr)�
X

i2T\U

|(P (U)|T\U)�1
xi |+ (2|msc|qr)

X

i2T\U

|(P (U)|T\U)�1
xi |

X

j2T\U

|(P (U)|T\U)�1
jy |

6 4(|z|+ 1)(d� 1)`(2|msc|qr)�+ 4(|z|+ 1)2(2|msc|qr)

6 �/2 + 4(|z|+ 1)2(2|msc|qr).
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For the second inequality, we used |Wxy| 6 2|msc|qr; for the third inequality we used

|T\U| 6 |T| 6 1+d+d(d�1)+ · · ·+d(d�1)`�1 6 2(d�1)`, and (3.84); for the last

inequality, we used r = 2`+1, so that (d�1)`qr 6 (d�1)�1/2 and |zmsc| 6 2. Taking

the maximum on the right-hand side of the above inequality, and rearranging, we get

� 6 16(|z|+ 1)2|msc|qr 6 48(|z|+ 1)qr,

as claimed. ⇤

Proof of Proposition 3.21. To prove the proposition, we define U by (3.70), and show

that

(3.93) |G(T)
ij �G(U)

ij | 6 |msc|qr/4.

This implies the claim. Indeed, the definition of U implies that Er(i, j,G(U)) =

Er(i, j,G(T)), and therefore (3.69) follows from (3.72), (3.93) and Proposition 3.22:

|G(T)
ij � Pij(Er(i, j,G(T)))| 6 |G(T)

ij �G(U)
ij |+ |G(U)

ij � P (U)
ij |+ |Pij(Er(i, j,G(U)))� P (U)

ij |

6 |msc|qr/4 + 3|msc|qr/2 + 22!+3|msc|qr+1 6 2|msc|qr.

Thus it remains to prove (3.93). By definition of U, we have distG(U)({i, j},T\U) >
r, and therefore Proposition 3.22 implies

max
x2T\U

n

|G(U)
ix |, |G(U)

jx |
o

6 3|msc|qr/2 6 2|msc|qr.(3.94)

Furthermore, by (3.81),

|G(T)
ij �G(U)

ij | 6
X

x,y2T\U

|G(U)
ix (H(U) � z � B0G(T)B)xyG

(U)
yj |

6 4|msc|2q2r
X

x,y2T\U

|(H(U) � z � B0
1(D1 � z)�1B1 + E)xy|,

(3.95)
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with E as in (3.91). For the sum, we have

X

x,y2T\U

|(H(U) � z � B0
1(D1 � z)�1B1 + E)xy|

6
X

x,y2T\U

H(U)
xy +

X

i,j2[[1,µ]]
l

i

,l

j

2T
`

\U

(B0
1)liai |(D1 � z)�1

a
i

a
j

|(B1)a
j

l
j

+ |z||T \ U|+ |T \ U|2 max
x,y2T\U

|Exy|

6
X

x,y2T\U

H(U)
xy +

1

d� 1

X

i,j2[[1,µ]]

|(D1 � z)�1
a
i

a
j

|+ 2(d� 1)`|z|+ 4(d� 1)2` (48(|z|+ 1)qr) ,

(3.96)

where we used |T\U| 6 2(d�1)` and (3.89). By our assumption G 2 ⌦̄, the subgraph

T has excess at most !. Therefore the total number of edges of T is bounded by

|T|+ ! 6 1 + d+ d(d� 1) + · · ·+ d(d� 1)`�1 + ! 6 2(d� 1)`, and

X

x,y2T\U

H(U)
xy 6 2(d� 1)`p

d� 1
.(3.97)

By the same argument as for (3.87), we get

1

d� 1

X

i,j2[[1,µ]]

|(D1 � z)�1
a
i

a
j

| = 1

d� 1

X

i2[[1,µ]]

|(D1 � z)�1
a
i

a
i

|+ 1

d� 1

X

i 6=j2[[1,µ]]

|(D1 � z)�1
a
i

a
j

|

6 3|msc|
2

✓

µ

d� 1
+

(2!)2

d� 1

◆

6 3|msc|
2

✓

2(d� 1)` +
(2!)2

d� 1

◆

(3.98)

where we used µ 6 2(d� 1)`+1. By combining (3.96)–(3.98), we have

X

x,y2T\U

|(H � z � B0
1(D1 � z)�1B1 + E)xy| 6 2(d� 1)`|z|+ 4(d� 1)2` (48(|z|+ 1)qr)+

+
2(d� 1)`p

d� 1
+

3|msc|
2

✓

2(d� 1)` +
(2!)2

d� 1

◆

6 5(|z|+ 1)(d� 1)`.

Combining the above estimate with (3.95), and using |zmsc| 6 2,

|G(T)
ij �G(U)

ij | 6 4|msc|2q2r5(|z|+ 1)(d� 1)` 6 20(|z|+ 1)|msc|p
d� 1

|msc|qr 6 |msc|qr/4.
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This finishes the proof. ⇤

3.6. Stability under switching. We recall the S-cells and S0-cells from Definition

3.17, and the set of switching data S(G) from Section 3.3.2. The results of this section

are the following stability estimates.

Proposition 3.26. Let z 2 C+, G 2 ⌦̄ (as in Section 3.1.2) be a d-regular graph,

and K > 2 be a constant such that, for all i, j 2 [[N ]] \ T,
�

�

�

G(T)
ij � Pij(Er(i, j,G(T)), z)

�

�

�

6 K|msc|qr.(3.99)

Then there exists an event F (G) ⇢ S(G) with PG(F (G)) = 1 � o(N�!+�), explicitly

defined in Section 3.6.1 below, such that for any S 2 F (G) such that G̃ = TS(G) 2 ⌦̄

the following hold:

• For i, j 2 [[N ]] \ T,

|Ĝ(T)
ij � Pij(Er(i, j, Ĝ(T)), z)| 6 2K|msc|qr.(3.100)

• For (i) i, j 2 [[N ]]\T in di↵erent S-cells, or (ii) i, j 2 [[N ]]\T such that j 2 St

and i 6⇠ St for some t,

(3.101) |Ĝ(T)
ij | 6 2Mp

N⌘
.

• For i, j 2 [[N ]] \ T,

(3.102) |G̃(T)
ij � Pij(Er(i, j, G̃(T)), z)| 6 27K3|msc|qr.

For all estimates, we assume
p
d� 1 > max{(! + 1)222!+10, 28(! + 1)K}, !0qr ⌧ 1

and that
p
N⌘ > M(d� 1)`+1 (where M is as in (3.60)).

In particular, for any G 2 ⌦(z, `), Proposition 3.21 implies that the assumptions of

Proposition 3.26 are satisfied with K = 2. Thus Propositions 3.21 and 3.26 together
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show that, for any graph G 2 ⌦(z, `), with high probability under S, the switched

graph G̃ belongs to ⌦+
1 (z, `) (as in Section 3.1).

3.6.1. Definition of the event F (G). We fix M and !0 by (3.60). We will prove

Proposition 3.26 with the set F (G) ⇢ S(G) defined by the following conditions on the

switching data S:

(i) At least µ�3! edges are switchable, i.e. the event in the probability in (3.37)

holds:

|WS| > µ� 3!.(3.103)

(ii) All except for ! of the vertices {c1, c2, . . . , cµ} have radius-R tree neighbor-

hoods in G(T), i.e. (3.52) holds.

(iii) The vertices {a1, . . . , aµ, b1, . . . , bµ} do not cluster in the sense of distance,

i.e. (3.29)–(3.31) and (3.49)–(3.51) hold.

(iv) The vertices {b1, b2, . . . , bµ} do not cluster in the sense of the Green’s function,

i.e. (3.61)–(3.63) hold.

Then, for any G 2 ⌦+
1 (z, `), we have

PG(F (G)) = 1� o(N�!+�).(3.104)

Indeed, (i) follows from Proposition 3.13, (ii) follows from (3.52), (iii) follows from

Propositions 3.10 and 3.15, and (iv) follows from Proposition 3.18.

3.6.2. Proof of (3.100). The proof of (3.100) follows the structure described below

(3.71). Moreover, similarly to the proof of Proposition 3.21, we distinguish between

vertices i, j that are close to the edges that get removed in going from G(T) to Ĝ(T)

and vertices that are far from these edges. We first focus on i, j that are close to

those edges that get removed.
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Localization. First, we replace Pij(Er(i, j,G)) by the vertex-independent Green’s func-

tion Pij, using Remark 2.8 with

(3.105) G0 = B3r({b1, b2, . . . , b⌫},G(T)), X = B2r({b1, b2, . . . , b⌫},G(T)).

Moreover, we define Ĝ0 to be the graph obtained by removing the edges {bi, ci}i6⌫

from G0. The deficit function of Ĝ0 is defined to be the restriction of that of Ĝ(T). We

abbreviate

G1 = TE(G0), P = G(G1), Ĝ1 = TE(Ĝ0), P̂ = G(Ĝ1).

Notice that Ĝ1 is equivalently obtained by removing the edges {bi, ci}i6⌫ from G1.

The following properties of G0 follow from (3.50) and (3.51).

Claim 3.27. Assume (3.50) and (3.51). Then each connected component of either

G0 or Ĝ0 contains at most 5! elements from {a1, . . . , aµ, b1, . . . , b⌫}. More precisely,

|{i 2 [[1, µ]] : ai 2 K}| 6 3!, |{i 2 [[1, ⌫]] : bi 2 K}| 6 2!,(3.106)

where K is the vertex set of any connected component of G0 or Ĝ0.

Proof. The claim follows directly from (3.50) and (3.51) and the definitions of G0 and

Ĝ0. ⇤

Verification of assumptions in Proposition 2.7. Since both G0 and Ĝ0 are subgraphs of

G 2 ⌦̄, their radius-R neighborhoods have excess at most !. Let K be the vertex set

of any connected component of G0 or Ĝ0. Since the deficit function of G0 (respectively

Ĝ0) is the restriction of that of G(T) (respectively Ĝ(T)), any of the vertices ai, bi, ci 2 K

contributes 1 to the sum of the deficit function over K. By Claim 3.27, the sums of

the deficit functions over any of the connected components of G0 and Ĝ0 are therefore

bounded by 3! + 2⇥ 2! 6 8!. Thus the assumptions of (2.14) are verified for both
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G0 and Ĝ0, and for any i, j 2 X,

(3.107) |Pij � Pij(Er((i, j,G(T)))| 6 22!+3|msc|qr+1,

provided that
p
d� 1 > 2!+2, and an analogous estimate holds for P̂ . Up to a

small error, we can therefore use P instead of P (Er((i, j,G(T))) and P̂ instead of

P (Er((i, j, Ĝ(T))).

Starting point. By the resolvent identity (B.1), we have:

Ĝ(T) �G(T) = G(T)�Ĝ(T),(3.108)

P̂ � P = P�P̂ ,(3.109)

where � =
P⌫

k=1(ebkck + ec
k

b
k

)/
p
d� 1. Taking the di↵erence of (3.108) and (3.109),

we obtain

(3.110)

Ĝ(T)
ij �P̂ij = (G(T)

ij �Pij)+
1p
d� 1

X

(x,y)2 ~E

(G(T)
ix �Pix)P̂yj+

1p
d� 1

X

(x,y)2 ~E

G(T)
ix (Ĝ(T)

yj �P̂yj),

where the summation is over the oriented edges

(x, y) 2 ~E = {(b1, c1), . . . , (b⌫ , c⌫), (c1, b1), . . . , (c⌫ , b⌫)}.(3.111)

We regard (3.110) as an equation for Ĝ(T)� P̂ , and will show that Ĝ(T)
ij � P̂ij is small

as a consequence of the smallness of G(T) � P .

Green’s function estimates. We first collect some estimates on Green’s functions, used

repeatedly:

8

>

>

>

>

>

<

>

>

>

>

>

:

|G(T)
ij |, |Pij|, |P̂ij| 6 2|msc|, (all i, j),

|G(T)
ij | 6 K|msc|qr, (distG(T)(i, j) > 2r),

|G(T)
ib

k

|, |G(T)
ic

k

| 6 M/
p
N⌘, (i, bk are in di↵erent S-cells, or i 6⇠ bk).

(3.112)
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The first estimate follows from (2.15), and (3.99); the second estimate follows from

assumption (3.99), and Pij(Er(i, j,G(T))) = 0; the last estimate holds by the definition

of ⇠ in Section 3.4.1.

Proof of (3.100) for i, j 2 X. By assumption and (3.107), the first term in (3.110) is

bounded by K|msc|qr + 22!+3|msc|qr+1. For the second term on the right-hand side

of (3.110), similarly |G(T)
ix � Pix| 6 K|msc|qr + 22!+3|msc|qr+1. Moreover, P̂yj = 0 if

y and j are in di↵erent connected components of Ĝ0 Thus by Claim 3.27, we have

P̂yj 6= 0 for at most 4! vertices y 2 {bi, ci : i 2 [[1, ⌫]]}, for which we use |P̂yj| 6 2|msc|
by (3.112). Combining these bounds, the second term in (3.110) is bounded by

1p
d� 1

X

(x,y)2 ~E

|G(T)
ix � Pix||P̂yj| 6 8!(K + 22!+3q)|msc|qr+1.(3.113)

To estimate the last term in (3.110), we denote

� := max
i,j2X

|Ĝ(T)
ij � P̂ij|.

Noticing that X ⇢ [
i=1Si, we decompose the last sum over ~E in (3.110) according to

the cases in (3.112) as

X

~E

[ · · · ] =
X

~E1

[ · · · ] +
X

~E2

[ · · · ] +
X

~E3

[ · · · ]

where here and below [ · · · ] abbreviates the terms in the last sum in (3.110) and

~E1 = {(bk, ck), (ck, bk) : i, bk are in di↵erent S-cells},
~E2 = {(bk, ck), (ck, bk) : i, bk are in the same S-cells, and distG(T)(i, bk) > 2r},
~E3 = {(bk, ck), (ck, bk) : i, bk are in the same S-cells, and distG(T)(i, bk) 6 2r}.
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Notice that, for any (x, y) 2 ~E, we have |(Ĝ(T) � P̂ )yj| 6 � by the definition of �.

For (x, y) 2 ~E1, |G(T)
ix | 6 M/

p
N⌘ by (3.112), and | ~E1| 6 2⌫ 6 4(d� 1)`+1,

X

~E1

[ · · · ] 6 �p
d� 1

X

(x,y)2 ~E1

|G(T)
ix | 6 4(d� 1)`+1/2M�p

N⌘
.

For (x, y) 2 ~E2, |G(T)
ix | 6 K|msc|qr by (3.112), and | ~E2| 6 2!0 by (3.62),

X

~E2

[ · · · ] 6 �p
d� 1

X

(x,y)2 ~E2

|G(T)
ix | 6 2K!0|msc|qr�p

d� 1
.

For (x, y) 2 ~E3, |G(T)
ix | 6 2|msc| by (3.112), and there are at most such 2! terms, i.e.

| ~E3| 6 2!, by (3.49),

X

~E3

[ · · · ] 6 �p
d� 1

X

(x,y)2 ~E3

|G(T)
ix | 6 4!|msc|�p

d� 1
.

Combining the sums over ~E1, ~E2, ~E3, we get

1p
d� 1

X

(x,y)2 ~E

|G(T)
ix ||Ĝ(T)

yj � P̂yj| 6 �

4
,

provided that
p
d� 1 > 20!, !0qr ⌧ 1 and

p
N⌘ > (d� 1)`+1M . Thus (3.110) leads

to

|Ĝ(T)
ij � P̂ij| 6(1 + 8!q)

�

K + 22!+3q
� |msc|qr + �/4.

Taking the supremum over i, j 2 X, we obtain

� 6 4

3
(1 + 8!q)

�

K + 22!+3q
� |msc|qr.

From this estimate, and from (3.107) to estimate P̂ij � Pij(Er(i, j, Ĝ(T))), we find

|Ĝ(T)
ij � Pij(Er(i, j, Ĝ(T)))| 6 |Ĝ(T)

ij � P̂ij|+ |P̂ij � Pij(Er((i, j, Ĝ(T)))|

6 4

3
(1 + 8!q)

�

K + 22!+3q
� |msc|qr + 22!+3|msc|qr+1 6 2K|msc|qr,(3.114)
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provided that
p
d� 1 > 22!+5. This concludes the proof of (3.100) for i, j 2 X. ⇤

Proof of (3.100) in the remaining case. In the remaining case at least one of i, j is

not contained in X; and by symmetry we can assume that i 62 X. Then Er(i, j,G(T)) =

Er(i, j, Ĝ(T)) and the graphs on both sides of the equality also have the same deficit

function. It therefore su�ces to show that |Ĝ(T)
ij � G(T)

ij | is small. By the resolvent

identity (3.108), we have

|Ĝ(T)
ij �G(T)

ij | 6 1p
d� 1

X

(x,y)2 ~E

|G(T)
ix ||Ĝ(T)

yj |.(3.115)

Since i /2 X, we have distG(T)(i, {bk, ck}) > 2r and therefore, by (3.112),

(3.116) |G(T)
ix | 6 K|msc|qr for any x 2 {bi, ci : i 2 [[1, ⌫]]}.

For the case that exactly one of i, j is in X, i.e. i 62 X and j 2 X, we now decompose

the set ~E defined in (3.111) as ~E = ~E 0
1 [ ~E 0

2 [ ~E 0
3, where

~E 0
1 = {(bk, ck), (ck, bk) : distG(T)(bk, j) 6 2r},

~E 0
2 = {(bk, ck), (ck, bk) : i ⇠ bk, distG(T)(bk, j) > 2r},

~E 0
3 = {(bk, ck), (ck, bk) : i 6⇠ bk, distG(T)(bk, j) > 2r}.

(3.117)

For (x, y) 2 ~E 0
1, since y, j 2 X, |Ĝ(T)

yj | 6 |Pyj(Er((y, j, Ĝ(T)))|+ 2K|msc|qr 6 2|msc| by
(3.114) and (2.15), and there are at most 2! terms, i.e. | ~E 0

1| 6 2! by (3.49),

X

~E0
1

[ · · · ] 6 1p
d� 1

X

(x,y)2 ~E0
1

(K|msc|qr)|Ĝ(T)
yj | 6

4K!|msc|qrp
d� 1

.

where now [ · · · ] refers to the terms in the sum in (3.115). For (x, y) 2 ~E 0
2, since

y, j 2 X, |Ĝ(T)
yj | 6 2K|msc|qr by (3.114), and | ~E 0

2| 6 2!0 by (3.61),

X

~E0
2

[ · · · ] 6 1p
d� 1

X

(x,y)2 ~E0
2

(K|msc|qr)|Ĝ(T)
yj | 6

2!0(K|msc|qr)(2K|msc|qr)p
d� 1

.
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For (x, y) 2 ~E 0
3, |G(T)

ix | 6 M/
p
N⌘ by the definition of ⇠, |Ĝ(T)

yj | 6 2K|msc|qr by

(3.114), and | ~E 0
3| 6 2⌫ 6 4(d� 1)`+1,

X

~E0
3

[ · · · ] 6 1p
d� 1

X

(x,y)2 ~E0
3

Mp
N⌘

(2K|msc|qr) 6 8K(d� 1)`+1qr+1 Mp
N⌘

.

Combining the sums over ~E 0
1, ~E

0
2, ~E

0
3, from (3.115) we obtain

|Ĝ(T)
ij �G(T)

ij | 6 K|msc|qr,

provided that
p
d� 1 > 20!, !0qr ⌧ 1 and

p
N⌘ > (d� 1)`+1M . This concludes the

proof of (3.100) for i 62 X and j 2 X,

|Ĝ(T)
ij � Pij(Er(i, j, Ĝ(T)))| = |Ĝ(T)

ij � Pij(Er(i, j,G(T)))|

6 |Ĝ(T)
ij �G(T)

ij |+ |G(T)
ij � Pij(Er((i, j,G(T)))| 6 2K|msc|qr.

(3.118)

For the case that i, j 62 X, noticing that distG(T)(bk, j) > 2r, we decompose the set

~E as ~E = ~E 0
2 [ ~E 0

3, where ~E 0
2 and ~E 0

3 are defined in (3.117). By (3.118), for any

(x, y) 2 ~E, Pyj(Er(y, j, Ĝ(T))) = 0 and thus |Ĝ(T)|yj 6 2K|msc|qr. Then the same

argument as above implies

|Ĝ(T)
ij �G(T)

ij | 6 K|msc|qr.

This finishes the proof of the stability of Ĝ(T). ⇤

3.6.3. Proof of (3.101). We again follow the structure described below (3.71), except

that no localization step is required to prove (3.101).

Starting point. Under both conditions given for (3.101), we have |G(T)
ij | 6 M/

p
N⌘ by

the definition of ⇠ as in Section 3.4.1. By the resolvent identity (3.108), we therefore
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have

(3.119) |Ĝ(T)
ij | 6 Mp

N⌘
+

1p
d� 1

X

(x,y)2 ~E

|G(T)
ix ||Ĝ(T)

yj |,

where ~E is as in (3.111). Notice that if i, j are in di↵erent S-cells, then for any

(x, y) 2 ~E, either i, x are in di↵erent S-cells, or y, j are in di↵erent S-cells. Similarly

if j 2 St and i 6⇠ St for some t, then for any (x, y) 2 ~E, either |G(T)
ix | 6 M/

p
N⌘,

or the vertices y, j are in di↵erent S-cells. The claim (3.100) follows by analyzing

(3.119) as an inequality for these Ĝ(T)
ij .

Green’s function estimates. We first collect some estimates on Green’s functions of

G(T) and Ĝ(T), which are repeatedly used in the proof: for (x, y) 2 ~E as in (3.111),

|G(T)
ix | 6

8

>

>

>

>

>

<

>

>

>

>

>

:

2|msc|, (all x),

K|msc|qr, (distG(T)(i, x) > 2r),

M/
p
N⌘, (i, x are in di↵erent S-cells; or i 6⇠ the S-cell containing x).

(3.120)

|Ĝ(T)
yj | 6

8

>

>

<

>

>

:

2|msc|, (all y),

2K|msc|qr, (distĜ(T)(y, j) > 2r),

(3.121)

These estimates follow from (3.99)–(3.100), together with (2.15) for the bound for all

x, y, and with Pix(Er(i, x,G(T))) = 0 for distG(T)(i, x) > 2r; and Pyj(Er(y, j, Ĝ(T))) = 0

for distĜ(T)(y, j) > 2r. The last bound in (3.120) holds by the definition of ⇠.

Proof of (3.101), case (i). We verify (3.101) in the case that i, j are in di↵erent S-

cells. Denote

� := max
t1 6=t2

max
i2S

t1 ,j2St2
|Ĝ(T)

ij |,
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and now abbreviate by [ · · · ] the terms in the sum in (3.119) including the 1/
p
d� 1

prefactor. We divide the set ~E according to their relations to the cells St1 and St2 as

~E = ~E1 [ ~E2 [ ~E3 [ ~E4 [ ~E5, where

~E1 = {(x, y) 2 St1 : distG(T)(i, x) 6 2r},
~E2 = {(x, y) 2 St1 : distG(T)(i, x) > 2r},
~E3 = {(x, y) 2 St2 : distG(T)(y, j) 6 2r},
~E4 = {(x, y) 2 St2 : distG(T)(y, j) > 2r},
~E5 = {(x, y) 62 St1 [ St2}.

For (x, y) 2 ~E1, | ~E1| 6 2! from (3.49), i.e. |{k 2 [[1, ⌫]] : dist(i, bk) < 2r}| 6 !, and

|Ĝ(T)
yj | 6 �, by the definition of �. Thus, by (3.120),

X

~E1

[ · · · ] 6 4!|msc|�p
d� 1

.

For (x, y) 2 ~E2, | ~E2| 6 2!0 from (3.62), i.e. |St1\{b1, . . . , b⌫}| 6 !0. Thus, by (3.120),

X

~E2

[ · · · ] 6 2K!0|msc|qr�p
d� 1

.

For (x, y) 2 ~E3, | ~E3| 6 2! from (3.49), and by (3.120)–(3.121),

X

~E3

[ · · · ] 6 Mp
N⌘

4!|msc|p
d� 1

For (x, y) 2 ~E4, | ~E4| 6 2!0 from (3.62), and distĜ(T)(y, j) > distG(T)(y, j) > 2r. Thus,

by (3.120)–(3.121),

X

~E4

[ · · · ] 6 Mp
N⌘

4K!0|msc|qrp
d� 1

.
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Finally, for (x, y) 2 ~E5, we use | ~E5| 6 2⌫ 6 4(d � 1)`+1 and |Ĝ(T)
yj | 6 � which holds

by the definition of �. Thus, by (3.120),

X

~E5

[ · · · ] 6 4(d� 1)`+1M�p
d� 1

p
N⌘

.

Combining the sums over ~E1, . . . , ~E5 in (3.119) leads to

|Ĝ(T)
ij | 6 Mp

N⌘
+

(4!|msc|+ 2K!0|msc|qr)�p
d� 1

+
(4!|msc|+ 4K!0|msc|qr)p

d� 1

Mp
N⌘

+
4M(d� 1)`+1/2�p

N⌘
.

By taking the maximum over i, j as in the assumption and rearranging the inequality,

we get

� 6 2M/
p

N⌘,(3.122)

provided that
p
d� 1 > 20!, !0qr ⌧ 1 and

p
N⌘ > M(d� 1)`+1. ⇤

Proof of (3.101), case (ii). For j 2 St and i 6⇠ St, we now decompose the set ~E

according to their relations to vertex i and the cell St as ~E = ~E 0
1 [ ~E 0

2 [ ~E 0
3 [ ~E 0

4 [ ~E 0
5,

with

~E 0
1 = {(bk, ck), (ck, bk) : i 6⇠ bk, bk 62 St},

~E 0
2 = {(bk, ck), (ck, bk) : i ⇠ bk, distG(T)(i, bk) 6 2r, bk 62 St},

~E 0
3 = {(bk, ck), (ck, bk) : i ⇠ bk, distG(T)(i, bk) > 2r, bk 62 St},

~E 0
4 = {(bk, ck), (ck, bk) : bk 2 St, distG(T)(bk, j) 6 2r},

~E 0
5 = {(bk, ck), (ck, bk) : bk 2 St, distG(T)(bk, j) > 2r}.
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For (x, y) 2 ~E 0
1, | ~E 0

1| 6 2⌫ 6 4(d � 1)`+1, and by (3.122), |Ĝ(T)
yj | 6 2M/

p
N⌘, since

y, j are in di↵erent S-cells. Thus, combining with (3.120),

X

~E0
1

[ · · · ] 6 4(d� 1)`+12M
2

N⌘

1p
d� 1

.

For (x, y) 2 ~E 0
2, y, j are in di↵erent S-cells. We have: | ~E 0

2| 6 2! from (3.49), i.e.

|{k 2 [[1, ⌫]] : dist(i, bk) 6 2r}| 6 !, and |Ĝ(T)
yj | 6 2M/

p
N⌘ by (3.122). Thus, by

(3.120),

X

~E0
2

[ · · · ] 6 8!|msc|Mp
d� 1

p
N⌘

.

For (x, y) 2 ~E 0
3, y, j are in di↵erent S-cells. We have: | ~E 0

3| 6 2!0 from (3.61), and

|Ĝ(T)
yj | 6 2M/

p
N⌘ by (3.122). Thus, by (3.120),

X

~E0
3

[ · · · ] 6 4K!0qr+1Mp
N⌘

.

For (x, y) 2 ~E 0
4, | ~E 0

4| 6 2! from (3.49), and (3.120)–(3.121),

X

~E0
4

[ · · · ] 6 4!|msc|Mp
d� 1

p
N⌘

.

For (x, y) 2 ~E 0
5, | ~E 0

5| 6 2!0 from (3.62), and distĜ(T)(y, j) > distG(T)(y, j) > 2r, since

in the graph G(T), bk and ck are adjacent. Thus, combining with (3.120)–(3.121),

X

~E0
5

[ · · · ] 6 4K!0qr+1Mp
N⌘

.

Therefore, (3.119) can be bounded by

|Ĝ(T)
ij | 6 Mp

N⌘
+

✓

12!|msc|Mp
d� 1

p
N⌘

+
8K!0qr+1Mp

N⌘
+

8M2(d� 1)`+1/2

N⌘

◆

6 2Mp
N⌘

,

given that
p
d� 1 > 20!, !0qr ⌧ 1 and

p
N⌘ > M(d� 1)`+1. ⇤
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3.6.4. Proof of (3.102). As in previous arguments, we follow the structure described

below (3.71).

Localization. The switching vertices that are not on the boundary of T after switch-

ing are given by {a1, . . . , aµ, b1, . . . , b⌫}. From Section 3.4.1, we recall the partition

{I1, I2, . . . , I} of this set. (Thus the Ij are the connected components of the Green’s

function graph R, with all connected components containing any of the vertices ai

joined to I1.) The close vertices X1 [ X2 and the larger subgraph G0 are defined by

(3.123)

G0 := B3r({a1, . . . , aµ, b1, . . . , b⌫},G(T)), X1 := B2r(I1,G(T)), X2 := B2r(I2[· · ·[I,G(T)).

By our construction of S-cells and S0-cells, it follows that X1 = S1 = S0
1 and X2 =

[
i=2Si = [0

i=2S0
i. By our conventions, the deficit function of the graph G0 is the

restriction of that on G(T). We define the graph Ĝ0 by removing edges {bi, ci}i6⌫ from

G0 and G̃0 by adding edges {ai, bi}i6⌫ to Ĝ0. The graphs Ĝ0 and G̃0 are given the

restricted deficit functions from Ĝ(T) and G̃(T) respectively. We abbreviate

G1 = TE(G0), Ĝ1 = TE(Ĝ0), P̂ = G(Ĝ1), G̃1 = TE(G̃0), P̃ = G(G̃1).

Notice that the graph Ĝ1 is obtained by removing the edges {bi, ci}i6⌫ from G1, and

that the graph G̃1 is obtained by adding the edges {bi, ai}i6⌫ to Ĝ1. We use the

following fact throughout this section.

Claim 3.28. If (3.50) and (3.51) hold, then each connected component of G̃0 contains

at most 10! elements in {a1, . . . , aµ, b1, . . . , b⌫}, i.e.

|{i 2 [[1, µ]] : ai 2 K}|+ |{i 2 [[1, ⌫]] : bi 2 K}| 6 10!,(3.124)

where K is the vertex set of any connected component of G̃0.

Proof. (3.124) is a consequence of Propositions 3.15 and 3.16. More precisely, if ai 2
K or bi 2 K for some i 2 [[1, µ]]\(Ba[Bb), thenK is disjoint from {a1, a2, . . . , aµ, b1, b2, . . . , b⌫}\
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{ai, bi}. Therefore |{i 2 [[1, µ]] : ai 2 K}| + |{i 2 [[1, ⌫]] : bi 2 K}| 6 2|Ba [ Bb| 6
10!. ⇤

Verification of assumptions in Proposition 2.7. By assumption G̃ = TS(G) 2 ⌦̄. Since

Ĝ0 and G̃0 can be viewed as subgraphs of G and G̃ respectively, the radius-R neigh-

borhoods of them have excess at most !. Moreover, the same argument as in Section

3.6.2 implies that the sum of the deficit functions on each connected component of Ĝ0

and that of G̃0 are bounded by 8!. Therefore the assumptions for (2.14) are verified

for both graphs Ĝ0 and G̃0. Thus (2.12)–(2.14) hold for P̂ and P̃ , and as in (3.107),

we can use P̂ instead of P (Er(i, j, Ĝ(T))) and P̃ instead of P (Er(i, j, G̃(T))).

Starting point. The proof is similar to that of (3.100). By the resolvent identity (B.1),

we have

G̃(T) � Ĝ(T) = Ĝ(T)�G̃(T),(3.125)

P̃ � P̂ = P̂�P̃ .(3.126)

where � =
P⌫

k=1(ebkak + ea
k

b
k

)/
p
d� 1. Taking di↵erence of (3.125) and (3.126), we

have

(3.127)

G̃(T)
ij �P̃ij = (Ĝ(T)

ij �P̂ij)+
1p
d� 1

X

(x,y)2 ~E

(Ĝ(T)
ix �P̂ix)P̃yj+

1p
d� 1

X

(x,y)2 ~E

Ĝ(T)
ix (G̃(T)

yj �P̃yj),

where the sums are over the ordered pairs

(x, y) 2 ~E = {(a1, b1), . . . , (a⌫ , b⌫), (b1, a1), . . . , (b⌫ , a⌫)}.(3.128)

We regard (3.127) as an equation for G̃(T) � P̃ , and will show that G̃(T) � P̃ is small,

using that Ĝ(T) � P̂ is small by (3.100).
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Green’s function estimates. We collect some estimates on Green’s function, which are

repeatedly used in the proof:

8

>

>

>

>

>

<

>

>

>

>

>

:

|Ĝ(T)
ij |, |P̂ij|, |P̃ij| 6 2|msc|, (all i, j),

|Ĝ(T)
ij | 6 2K|msc|qr, (distG(T)(i, j) > 2r),

|Ĝ(T)
ib

k

|, |Ĝ(T)
ic

k

| 6 2M/
p
N⌘, (i, bk are in di↵erent S-cells; or i 6⇠ bk)

(3.129)

The first estimate follows from (2.15) and (3.100); the second estimate follows from

Pij(Er(i, j, Ĝ(T))) = 0 and (3.100); the last estimate is from (3.101).

Proof of (3.102) for i, j 2 X1 [ X2. For the second term on the right-hand side of

(3.127), it follows from (3.100) that |Ĝ(T)
ix � P̂ix| 6 2K|msc|qr+22!+3|msc|qr+1. More-

over, again P̃yj = 0 if y and j are in di↵erent connected components of G̃0. Thus, by

Claim 3.28, we have P̃yj 6= 0 for at most 10! vertices y 2 {ai : i 2 [[1, µ]]} [ {bi : i 2
[[1, ⌫]]}, and for these we again have |P̃yj| 6 2|msc| by (3.129). Altogether, the second

term on the right-hand of (3.127) is bounded by

1p
d� 1

X

(x,y)2 ~E

|Ĝ(T)
ix � P̂ix||P̃yj| 6 20!(2K + 22!+3q)|msc|qr+1.

To estimate the last term in (3.127), we denote

�1 := max
i,j2X1

|P̃ij � G̃(T)
ij |, �2 := max

i2X2,j2X1[X2

|P̃ij � G̃(T)
ij |.

Our goal is to prove that

�1,�2 6 24K2|msc|qr.(3.130)

In the following, we first derive an estimate for �2. We assume that i 2 St for some

t 6= 1, and j 2 X1 [ X2. We decompose the set ~E (as in (3.128)) according to their
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relations to the S-cell St: ~E = ~E1 [ ~E2 [ ~E3, where

~E1 = {(x, y) : x 62 St},
~E2 = {(x, y) : x 2 St, distG(T)(i, x) < 2r},
~E3 = {(x, y) : x 2 St, distG(T)(i, x) > 2r}.

Notice that for any (x, y) 2 ~E, by the definition of �1,�2, we always have |P̃yj�G̃(T)
yj | 6

max{�1,�2}. For (x, y) 2 ~E1, we have | ~E1| 6 2⌫ 6 4(d � 1)`+1. Since i, x are in

di↵erent S-cells, by (3.129),

X

~E1

[ · · · ] 6 1p
d� 1

X

(x,y)2 ~E1

|Ĝ(T)
ix |max{�1,�2} 6 4(d� 1)`+1

p
d� 1

2Mp
N⌘

max{�1,�2}.

For (x, y) 2 ~E2, we have | ~E2| 6 2! by (3.30) and (3.49). Thus, by (3.129),

X

~E2

[ · · · ] 6 1p
d� 1

X

(x,y)2 ~E2

|Ĝ(T)
ix |max{�1,�2} 6 4!|msc|p

d� 1
max{�1,�2}.

For (x, y) 2 ~E3, we have | ~E3| 6 !0 from (3.62), and combined with (3.129),

X

~E3

[ · · · ] 6 1p
d� 1

X

(x,y)2 ~E3

|Ĝ(T)
ix |max{�1,�2} 6 2K!0|msc|qrp

d� 1
max{�1,�2}.

Combining the sums over ~E1, ~E2, ~E3, for i 2 X2 and j 2 X1 [ X2, (3.127) leads to

|G̃(T)
ij � P̃ij| 6 (20!q + 1)(2K + 22!+3q)|msc|qr + 8(! + 1)p

d� 1
max{�1,�2},

given
p
N⌘ > M(d � 1)`+1,

p
d� 1 > 20! and !0qr ⌧ 1. Moreover, taking the

maximum over all i 2 X2 and j 2 X1 [ X2, we get

�2 6 (20!q + 1)(2K + 22!+3q)|msc|qr + 8(! + 1)p
d� 1

max{�1,�2}.(3.131)
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Next, we estimate �1. To this end, we decompose the set ~E (as in (3.128)) according

to the cases in (3.129) as ~E = ~E 0
1 [ ~E 0

2 [ ~E 0
3 [ ~E 0

4, where

~E 0
1 = {(x, y) : x 2 X1, distG(T)(i, x) 6 2r},

~E 0
2 = {(x, y) : x, y 2 X1, distG(T)(i, x) > 2r},

~E 0
3 = {(x, y) : x 2 X1, y 2 X2, distG(T)(i, x) > 2r},

~E 0
4 = {(x, y) : x 2 X2}.

For (x, y) 2 ~E 0
1, | ~E 0

1| 6 2! from (3.30) and (3.49). |P̃yj � G̃(T)
yj | 6 max{�1,�2} by the

definition of �1,�2. Therefore, by (3.129),

X

~E0
1

[ · · · ] 6 1p
d� 1

X

(x,y)2 ~E0
1

|Ĝ(T)
ix |max{�1,�2} 6 4!|msc|p

d� 1
max{�1,�2}.

For (x, y) 2 ~E 0
2, | ~E 0

2| 6 2!0 from (3.62), and |P̃yj � G̃(T)
yj | 6 �1 from the definition of

�1. Thus, by (3.129),

X

~E0
2

[ · · · ] 6 1p
d� 1

X

(x,y)2 ~E0
2

|Ĝ(T)
ix |�1 6 4K!0qr+1�1.

For (x, y) 2 ~E 0
3, we have | ~E 0

3| 6 2⌫ 6 4(d � 1)`+1, and |P̃yj � G̃(T)
yj | 6 �2 from the

definition of �2. Thus, by (3.129),

X

~E0
3

[ · · · ] 6 1p
d� 1

X

(x,y)2 ~E0
3

|Ĝ(T)
ix |�2 6 8K(d� 1)`+1qr+1�2.

For (x, y) 2 ~E 0
4, we have | ~E 0

4| 6 ⌫ 6 2(d�1)`+1, and |P̃yj � G̃(T)
yj | 6 max{�1,�2} from

the definition of �1,�2. Thus, by (3.129),

X

~E0
4

[ · · · ] 6 1p
d� 1

X

(x,y)2 ~E0
4

|Ĝ(T)
ix |(�1 + �2) 6

4(d� 1)`+1Mp
d� 1

p
N⌘

max{�1,�2}.
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Using r = 2`+ 1, and combining the above estimates in (3.127), we obtain that, for

all i, j 2 X1,

|G̃(T)
ij � P̃ij| 6 (20!q + 1)(2K + 22!+3q)|msc|qr + 8(! + 1)p

d� 1
�1 +

✓

8K +
4! + 4p
d� 1

◆

�2,

given
p
N⌘ > M(d � 1)`+1 and !0qr ⌧ 1. Taking the maximum over the left-hand

side, we have

(3.132) �1 6 (20!q + 1)(2K + 22!+3q)|msc|qr + 8(! + 1)p
d� 1

�1 +

✓

8K +
4! + 4p
d� 1

◆

�2.

Finally, the claim (3.130) follows by combining (3.131) and (3.132), provided that
p
d� 1 > max{(!+1)222!+10, 28(!+1)K}. Therefore for any i, j 2 X1[X2, we have

|G̃(T)
ij � Pij(Er(i, j, G̃(T)))| 6 |(G̃(T) � P̃ )ij|+ |P̃ij � Pij(Er(i, j, G̃(T)))|

6 24K2|msc|qr + 22!+3|msc|qr+1 6 (24K2 + 1)|msc|qr,

(3.133)

which implies the bound stated in (3.102). ⇤

Proof of (3.102) for the remaining case. For i /2 X1 [ X2 and j 2 X1 [ X2, first note

that Er(i, j, Ĝ(T)) = Er(i, j, G̃(T)) and that both graphs have the same deficit function.

To prove (3.102), we will show that |G̃(T)
ij � Ĝ(T)

ij | is small. To this end, we start from

the resolvent identity (3.125), which states that

(3.134) |G̃(T)
ij � Ĝ(T)

ij | 6 1p
d� 1

X

(x,y)2 ~E

|Ĝ(T)
ix ||G̃(T)

yj |.

By the definition of the sets X1,X2, for any (x, y) 2 ~E, we have distG(T)(i, x) > 2r

and |Ĝ(T)
ix | 6 2K|msc|qr by (3.129). We simply decompose the set ~E (as in (3.128))
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according to their distance to the vertex j as ~E = ~E1 [ ~E2, where

~E1 = {(x, y) : distG̃(T)(y, j) < 2r},
~E2 = {(x, y) : distG̃(T)(y, j) > 2r}.

For (x, y) 2 ~E1, we have | ~E1| 6 10! by (3.124) in Claim 3.28. Moreover, |G̃(T)
yj | 6

|Pyj(Er(y, j, G̃(T)))| + (24K2 + 1)|msc|qr 6 2|msc| by (3.133). Thus, combining with

(3.129), we have
X

~E1

[ · · · ] 6 40K!|msc|qr+1,

where here [ · · · ] denotes the terms in the sum in (3.134). For (x, y) 2 ~E2, we

have | ~E2| 6 2⌫ 6 2(d � 1)`+1, and |G̃(T)
yj | 6 (24K2 + 1)|msc|qr by (3.133), since

Pyj(Er(y, j, G̃(T))) = 0. Thus, combining with (3.129),

X

~E2

[ · · · ] 6 2K(24K2 + 1)|msc|2q2r 2(d� 1)`+1

p
d� 1

.

Combining the sums over ~E1, ~E2, we get

|G̃(T)
ij � Ĝ(T)

ij | 6 40K!qr+1 + 2K(24K2 + 1)|msc|2q2r 2(d� 1)`+1

p
d� 1

6 100K3|msc|qr,

provided that
p
d� 1 > 20!. Similarly, in the case i, j /2 X1 [ X2, we have

|G̃(T)
ij �Ĝ(T)

ij | 6 1p
d� 1

X

(x,y)2 ~E

|Ĝ(T)
ix ||G̃(T)

yj | 6 2K(24K2+1)|msc|2q2r 2(d� 1)`+1

p
d� 1

6 100K3|msc|qr.

Therefore, for i /2 X1 [ X2 and j 2 X1 [ X2 or i, j /2 X1 [ X2, we obtain

|G̃(T)
ij � Pij(Er(i, j, G̃(T)))| 6 |G̃(T)

ij � Ĝ(T)
ij |+ |Ĝ(T)

ij � Pij(Er(i, j, Ĝ(T)))|

6 100K3|msc|qr + 2K|msc|qr 6 27K3|msc|qr.

This completes the proof of (3.102). ⇤
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3.7. Improved decay in the switched graph. In the graph G̃ = TS(G), the edge

boundary @ET and the vertex boundary @T of T are given by

(3.135) @ET = {(l1, ã1), (l2, ã2), . . . , (lµ, ãµ)}, I := @T = {ã1, ã2, . . . , ãµ},

where the vertices ãi = ci with i 2 [[1, ⌫]] are those that get switched, and the vertices

ãi = ai with i 2 [[⌫ + 1, µ]] are those for which the switching does not take place. Here

recall from Remark 3.14 that we assume without loss of generality that the index set

of admissible switchings is WS = [[1, ⌫]] ⇢ [[1, µ]].

The result of this section is the following proposition, showing that (i) between

most vertices in I the Green’s function is small; (ii) for any vertex not in I, the

Green’s function between it and most vertices in I is also small. This decay asserted

by the proposition is better than that between the boundary vertices of T which we

assumed in the unswitched graph. This improvement is crucial for the subsequent

sections, in particular for the derivation of the self-consistent equation.

Proposition 3.29. Under the same assumptions as in Proposition 3.26, let S 2 F (G)
(as in Section 3.6.1) and assume that G̃ = TS(G) 2 ⌦̄ (as in Section 3.1.2). Then

there exists J ⇢ [[1, ⌫]] with |J | > ⌫ � !0 � 6! such that, for any k 2 J ,

|G̃(T)
ic

k

| 6 29K4|msc|q2r+1 if i = ãj for some j 2 [[1, µ]] \ J,(3.136)

|G̃(T)
ic

k

| 6 212K5|msc|q3r+2 if i = ãj for some j 2 J \ {k},(3.137)

|G̃(T)
ic

k

| 6 212K5|msc|q2r+1 if i 6⇠ bk and distG̃(T)(i, ak) > 2r,(3.138)

provided that
p
d� 1 > max{(!+1)222!+10, 28(!+1)K}, !0qr ⌧ 1 and

p
N⌘q3r+2 >

M .

The proposition uses the randomness of the resampling via the properties of the

Green’s function that are encoded by the S0-cells. Indeed, recall that if ck was a

random index, independent of G̃(T) and i, then the size of the right-hand sides would



98

be of order 1/
p
N⌘ ⌧ |msc|q3r+2 by the Ward identity (B.6). The remainder of this

section is devoted to the proof of the proposition.

3.7.1. Preliminaries. To prove Proposition 3.29, we use the same setup as in the

proof of (3.102). Thus, from (3.123) and the paragraph below, recall the sets X1,X2

and the graphs G0, Ĝ0, G̃0, and that the set X1 [X2 is contained in G0 (the vertex set

of G0). We also recall the S0-cells defined in Section 3.4.1.

We will prove Proposition 3.29 with the set J ⇢ [[1, ⌫]] given by the set of indices

k 2 [[1, ⌫]] such that the following conditions hold:

(i) bk, ck 2 X2 (i.e. the S-cell containing bk and ck is not S1);

(ii) BR(ck,G(T)) is a tree;

(iii) the S0-cell S0 containing bk and ck is not S0
1 (as implied by (i)) and satisfies

(3.139) distG̃(T)(S0, {am : m 2 [[1, µ]] \ {k}} [ {bm, cm : m 2 [[1, ⌫]] \ {k}}) > R/4.

By the assumption S 2 F (G), and using the definition of F (G) given in Section 3.6.1,

note that (3.52) and (3.63) hold. (3.52) implies that condition (ii) in the definition of

J is true for all k 2 [[1, ⌫]] with at most ! exceptions. (3.63) implies condition (i), and

further that condition (iii) is true for all k 2 [[1, ⌫]] with at most !0 + 5! exceptions.

It follows that

|J | > ⌫ � !0 � 6!,

as asserted in the statement of Proposition 3.29. With this definition of J , to prove

Proposition 3.29, we now follow the structure described below (3.71) (without the

localization step, which is not required here).

Starting point. For the remainder of this section, we fix k 2 J and denote the S0-cell

containing ck by S0. Notice that, by the definition of J , the S0-cell S0 is not S0
1, and

that it is equal to the S-cell containing ck. For any i arising in the statement of

Proposition 3.29, we either have i 2 I, in which case i and ck are in di↵erent S-cells
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(by definition of J , the S-cell of ck does not contain any ãj), or otherwise i 6⇠ bk.

Noticing that bk and ck are in the same S-cell, in both cases, the estimate (3.101) with

j = ck holds. Therefore, since the graph G̃(T) is given by adding the edges {ai, bi}i6⌫

to Ĝ(T), by the resolvent formula (B.1), we have

|G̃(T)
ic

k

| =
�

�

�

�

�

�

Ĝ(T)
ic

k

+
1p
d� 1

X

(x,y)2 ~E

Ĝ(T)
ix G̃(T)

yc
k

�

�

�

�

�

�

6 2Mp
N⌘

+
1p
d� 1

X

(x,y)2 ~E

|Ĝ(T)
ix G̃(T)

yc
k

|,

(3.140)

where the summation is over the ordered pairs

(3.141) (x, y) 2 ~E = {(a1, b1), . . . , (a⌫ , b⌫), (b1, a1), . . . , (b⌫ , a⌫)}.

By our assumption on ⌘, the first term on the right-hand side of (3.140) is smaller

than the right-hand sides of (3.136)–(3.138), so we only need to estimate the sum on

the right-hand side of (3.140).

Green’s function estimates. To estimate the sum on the right-hand side of (3.140),

we use the following estimates on Green’s functions, which hold for (x, y) 2 ~E:

|Ĝ(T)
ix | 6

8

>

>

>

>

>

<

>

>

>

>

>

:

2|msc| (all x),

2K|msc|qr (distĜ(T)(i, x) > 2r),

2M/
p
N⌘ (i and x are in di↵erent S-cells, or i 6⇠ the S-cell containing x),

(3.142)

|G̃(T)
yc

k

| 6

8

>

>

<

>

>

:

2|msc| (all y),

27K3|msc|qr (distG̃(T)(y, ck) > 2r).

(3.143)

The last bound in (3.142) holds by (3.101). The remaining estimates follow from

Propositions 3.26, together with (2.15) for the bound for all x, y; with Pix(Er(i, x, Ĝ(T))) =
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0 for for the bound for distĜ(T)(i, x) > 2r; and with Pyc
k

(Er(y, ck, G̃(T))) = 0 for the

bound for distG̃(T)(y, ck) > 2r.

Distance estimates. Since the estimates (3.142)–(3.143) depend on distances, we need

some estimates on distances in the graphs Ĝ(T) and G̃(T). These are summarized in

the following lemma.

Lemma 3.30. Let k 2 J and S0 be the S0-cell that contains ck. Then the following

estimates hold.

(i) In the graph G̃(T), the vertex ck is far away from {a1, . . . , aµ, b1, . . . , b⌫}:

(3.144) distG̃(T)(ck, {a1, . . . , aµ, b1, . . . , b⌫}) > 2r.

(ii) If distG̃(T)(i, S0) > 2r, then

(3.145) distĜ(T)(i, ak) > distG̃(T)(i, ak) > 2r.

(iii) If i 2 X1 and distG̃(T)(i, ak) > 2r, then

(3.146) distG̃(T)(i, S0) > 2r.

Notice also that, by the definition of J , we have {m 2 [[1, ⌫]] : bm 2 S0} = {k}.

Proof. To prove (i), it follows from (3.139) from the definition of J that

distG̃(T)(ck, {am : m 2 [[1, µ]] \ {k} [ {bm : m 2 [[1, ⌫]] \ {k}}} > R/4 > 2r.

It remains to prove distG̃(T)(ck, {ak, bk}} > 2r. Given any geodesic in G̃(T) from ck to

{ak, bk}, we distinguish two cases. In the first case that the geodesic contains any

of the edges {am, bm}m6⌫ , the condition (3.139) which holds by the definition of J ,

implies that its length is larger than 2r. In the second case that the geodesic contains

none of the edges {am, bm}m6⌫ , it a path on the graph Ĝ(T).
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Therefore, to prove (i), it su�ces to show that (3.144) holds with the graph G̃(T)

replaced by Ĝ(T). By the condition bk, ck 2 X2, and since bk, ck are adjacent in G(T),

it follows from Lemma 3.19 that distG(T)(bk, ak) > 8r, and therefore that

distĜ(T)(ck, ak) > distG(T)(ck, ak) > 8r > 2r.

Moreover, since ck has radius-R tree neighborhood in G(T), and since in Ĝ(T) the edge

{bk, ck} is removed compared to G(T), we have

distĜ(T)(bk, ck) > R > 2r.

This completes the proof of (3.144) with G̃(T) replaced by Ĝ(T), and thus the proof of

(i).

For (ii), since ak and bk 2 S0 are adjacent in the graph G̃(T), we have

distG̃(T)(i, ak) > distG̃(T)(i, S0)� 1 > 2r.

The first inequality in (3.145) is trivial since Ĝ(T) ⇢ G̃(T).

To prove (iii), note that any geodesic from i to S0 in G̃(T) either contains ak, or

does not contain the edge {ak, bk}. In the first case that the geodesic contains ak, its

length is at least 1 + distG̃(T)(i, ak) > 2r, as desired. In the second case,

distG̃(T)(i, S0) > distG̃(T)\{a
k

,b
k

}(X1 [ X2 \ S0, S0) = distG(T)(X1 [ X2 \ S0, S0) > 4r,

where the first inequality holds since i 2 X1 [ X2 \ S0, and the last inequality

follows from the definition of the S-cells and Lemma 3.19. Recall that the graph

G̃(T) is obtained from G(T) by adding the edges {am, bm}m6⌫ and removing the edges

{bm, cm}m6⌫ . And by the definition of the set J , we know {bk, ck} ⇢ S0 and {bm, cm :

m 2 [[1, ⌫]] \ {k}} ⇢ X1 [ X2 \ S0. Therefore, the graph G̃(T) \ {ak, bk} and G(T) are
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di↵erent only on the subgraphs induced on S0 and X1 [ X2 \ S0, and the equality in

the above equation holds. ⇤

The proof of Proposition 3.29 essentially follows from the heuristic described in

Remark ??, which can be made rigorous by combining the estimates on the Green’s

function of (3.142)–(3.143) with those on the distances stated in Lemma 3.30. This

requires a division into a number of cases and is done carefully below.

3.7.2. Proof of (3.136). Let

�1 := max
n

|G̃(T)
ic

k

| : i 2 X1 such that distG̃(T)(i, S0) > 2r
o

,(3.147)

�2 := max
n

|G̃(T)
ic

k

| : i 2 X2 and i 62 S0
o

.(3.148)

Thus �1 is the maximal size of the Green’s function between ck and vertices in X1

which is away from S0, and �2 is the maximal size of the Green’s function between ck

and vertices in X2 which is in di↵erent S0-cells from ck.

Proposition 3.31.

max{�1,�2} 6 29K4|msc|q2r+1,(3.149)

provided that
p
d� 1 > max{(!+1)222!+10, 28(!+1)K}, !0qr ⌧ 1 and

p
N⌘q2r+2 >

M .

Given Proposition 3.31, the claim (3.136) is an immediate consequence.

Proof of (3.136). It su�ces to show that the left-hand side of (3.136) is bounded by

max{�1,�2}. First, if i 2 X2, then i = cl for some l 6= k, and by the definition of

J , then cl 62 S0. Thus the left-hand sides of (3.136) is bounded by �2. Second, if

i 2 X1, then either i = al or i = cl for some l 6= k. In either case, by the definition of

J , distG̃(T)(i, S0) > R/4 � 2r > 2r. Thus the left-hand side of (3.136) is bounded by

�1. ⇤
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Proof of Proposition 3.31. We first derive a bound for �1. Let i obey the conditions in

the definition of �1 in (3.147). We divide the sum over the set ~E in (3.140) according

to the cases in (3.142)–(3.143) as ~E = ~E1 [ · · · [ ~E5, where

~E1 = {(ak, bk)},
~E2 = {(bk, ak)},
~E3 = {(bl, al) : l 6= k, bl 2 X2},
~E4 = {(al, bl) : l 6= k, bl 2 X2},
~E5 = {(al, bl), (bl, al) : l 6= k, bl 2 X1}.

For (ak, bk) 2 ~E1, we have distĜ(T)(i, ak) > 2r by (3.145) and distG̃(T)(bk, ck) > 2r by

(3.144). Thus, by (3.142)–(3.143),

X

~E1

[ · · · ] 6 (2K|msc|qr)(27K3|msc|qr)p
d� 1

.

For (bk, ak) 2 ~E2, we have bk 2 X2 and i 2 X1, which implies i and bk are in di↵erent

S-cells. Thus, by (3.142)–(3.143),

X

~E2

[ · · · ] 6 2Mp
N⌘

2|msc|p
d� 1

6 4qMp
N⌘

.

For (bl, al) 2 ~E3, we again have that i and bl are in di↵erent S-cells (since bl 2 X2) and

distG̃(T)(al, ck) > 2r by (3.144). Thus, by (3.142)–(3.143) and | ~E3| 6 µ 6 2(d� 1)`+1,

X

~E3

[ · · · ] 6 Mp
N⌘

29K3(d� 1)`+1qr+1.

For (al, bl) 2 ~E4, there are at most !+1 indices l such that distG(T)(i, al) 6 distĜ(T)(i, al) <

2r by (3.30), and at most | ~E4| 6 µ 6 2(d�1)`+1 indices such that distĜ(T)(i, al) > 2r.

Moreover, we have bl 2 X2 and also bl 62 S0 by the definition of J . Thus, by (3.142)
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and the definition of �2,

X

~E4

[ · · · ] 6
✓

(! + 1)
2|msc|p
d� 1

+ 2(d� 1)`+12K|msc|qrp
d� 1

◆

�2.

For (x, y) 2 ~E5, there are at most 10! pairs (x, y) 2 ~E5 such that distG̃(T)(i, x) < 2r

by (3.54) in Proposition 3.16, at most 2!0 pairs such that distG̃(T)(i, x) > 2r since

|X1 \ {b1, . . . , b⌫}| 6 !0 by (3.62). Thus, by (3.142) and |G̃(T)
yc

k

| 6 �1

X

~E5

[ · · · ] 6
✓

10!
2|msc|p
d� 1

+ 2!02K|msc|qrp
d� 1

◆

�1.

Combining the sums over ~E1, . . . ~E5, and taking the maximum over i obeying the

conditions in the definition of �1 in (3.147), we get

(3.150)

�1 6
�

2 + 4q + 29K3
� Mp

N⌘
+28K4|msc|q2r+1+(20!q+4K!0qr+1)�1+(2(!+1)q+4K)�2.

To bound �2, let i 2 X2 be as in the definition of �2. Let S00 be the S0-cell

containing i, and notice that S0 6= S00, S0
1 from the definition of �2. We now divide

~E = ~E 0
1 [ · · · [ ~E 0

4 where

~E 0
1 = {(x, y) : x 2 X1},(3.151)

~E 0
2 = {(bl, al) : bl 2 S0} = {(bk, ak)},(3.152)

~E 0
3 = {(bl, al) : bl 2 S00},(3.153)

~E 0
4 = {(bl, al) : bl 2 X2 \ (S0 [ S00)}.(3.154)

For (x, y) 2 ~E 0
1, i and x are in di↵erent S-cells (since x 2 X1 and i 2 X2) and

distG̃(T)(y, ck) > 2r by (3.144). Since | ~E 0
1| 6 2µ 6 4(d� 1)`+1

X

~E0
1

[ · · · ] 6 4(d� 1)`+1 2Mp
N⌘

27K3|msc|qrp
d� 1

.
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For (bk, ak) 2 ~E 0
2, i and bk are in di↵erent S-cells since i 2 S00 and bk 2 S0 by

assumption. Moreover, we have distG̃(T)(ak, ck) > 2r by (3.144). Thus

X

~E0
2

[ · · · ] 6 2Mp
N⌘

27K3|msc|qrp
d� 1

.

For (bl, al) 2 ~E 0
3, there are at most 5! indices l such that distG̃(T)(i, bl) < 2r by (3.54)

in Proposition 3.16, and at most | ~E 0
3| 6 |{l 2 [[1, ⌫]] : bl 2 S00}| 6 !0 + 5! indices

such that distG̃(T)(i, bl) > 2r by (3.63). Moreover, |G̃(T)
a
l

c
k

| 6 �1 (since distG̃(T)(al, S0) >

R/4� 2r > 2r by the definition of J). Thus

X

~E0
3

[ · · · ] 6
✓

5!
2|msc|p
d� 1

+ (!0 + 5!)
2K|msc|qrp

d� 1

◆

�1.

For (bl, al) 2 ~E 0
4, i and bl are in di↵erent S-cells; al and ck are in di↵erent S-cells

(since al 2 S0
1 and ck 2 S0); there are at most | ~E 0

4| 6 µ 6 2(d� 1)`+1 terms. Thus

X

~E0
4

[ · · · ] 6 2(d� 1)`+1 2Mp
N⌘

�1p
d� 1

.

Combining the sums over ~E 0
1, . . . , ~E

0
4, and taking the maximum over i obeying the

conditions in the definition of �2, we get

(3.155)

�2 6
�

2 + 210K3 + 28K3qr+1
� Mp

N⌘
+

✓

10!q + 2K(!0 + 5!)qr+1 +
4(d� 1)`+1/2Mp

N⌘

◆

�1.

In summary, in (3.150) and (3.155), we have shown that

�1 6 a+ b�1 + c�2, �2 6 d+ e�1,

where a, b, c, d, e are explicit constants given in (3.150) and (3.155). By plugging the

second estimate into the first one, noticing b + ce < 1, and using the explicit values
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of a, b, c, d, e, it follows that

�1 6 (a+ cd)/(1� (b+ ce)) 6 29K4|msc|q2r+1, �2 6 d+ e�1 6 29K4|msc|q2r+1,

provided that
p
d� 1 > max{(!+1)222!+10, 28(!+1)K}, !0qr ⌧ 1 and

p
N⌘q2r+2 >

M . ⇤

3.7.3. Proofs of (3.138) and (3.137).

Proof of (3.138). To bound the left-hand side of (3.138), consider first the case

that i 2 X1 [ X2: (i) if i 2 X1 and distG̃(T)(i, ak) > 2r, it follows by (3.146) that

distG̃(T)(i, S0) > 2r. Thus the left-hand side of (3.138) is bounded by �1; (ii) if i 2 X2

and i 6⇠ bk, then i 62 S0, and the left-hand side of (3.138) is bounded by �2. Therefore

(3.138) follows from Proposition 3.31.

For the remaining case i 62 X1 [ X2 and i 6⇠ bk, we bound the sum over ~E in

(3.140). By the definition of X1 and X2, distG(T)(i, {a1, . . . , aµ, b1, . . . , b⌫}) > 2r,

and therefore also in Ĝ(T) ⇢ G(T). Thus (3.142) implies |Ĝ(T)
ix | 6 2K|msc|qr for all

x 2 {a1, . . . , a⌫ , b1, . . . , b⌫}.
For (x, y) = (ak, bk), (bk, ak), we have distG̃(T)(y, ck) > 2r by (3.144), and thus

|G̃(T)
yc

k

| 6 27K3|msc|qr by (3.143). The remaining y 6= ak, bk satisfy either the condition

in (3.147) or in (3.148). Therefore |G̃(T)
yc

k

| 6 max{�1,�2} 6 �1, and there are at most

2µ 6 2d(d� 1)` such terms.

In summary, we have shown

|G̃(T)
ic

k

| 6 2Mp
N⌘

+ 29K4|msc|q2r+1 + (2Kqr+1)(2d(d� 1)`)�1 6 212K5|msc|q2r+1,

provided that
p
N⌘ > Mq�2r�2, where we used r = 2`+ 1. ⇤

Proof of (3.137). It remains to estimate G̃(T)
c
j

c
k

for j 2 J \ {k}. As previously, we

denote by S0 the S0-cell containing ck, and now denote by S00 the S0-cell containing cj.

The estimates in Lemma 3.30 on distances from ck also apply with ck replaced by cj.
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Similarly to the bound of �2, we use formula (3.140) and devide ~E as ~E = ~E1[· · ·[ ~E5,

where

~E1 = {(x, y) : x 2 X1, x 6= ak},
~E2 = {(ak, bk)},
~E3 = {(bl, al) : bl 2 S0} = {(bk, ak)},
~E4 = {(bl, al) : bl 2 S00} = {(bj, aj)},
~E5 = {(bl, al) : bl 2 X2 \ (S0 [ S00)}.

Notice that for any x 2 {a1, . . . , a⌫ , b1, . . . , b⌫}\{bj}, by the definition of J , x, cj are in

di↵erent S-cells, and thus |Ĝ(T)
c
j

x| 6 2M/
p
N⌘ by (3.142). Moreover, by the definition

of J , for any y 2 {am, bm : m 2 [[1, ⌫]] \ {k}}, we have distG̃(T)(y, S0) > R/4� 2r > 2r

and thus y satisfies the condition either in (3.147) or in (3.148). It follows that

|G̃(T)
yc

k

| 6 max{�1,�2} 6 �1. For (x, y) 2 ~E1. Since | ~E1| 6 2µ 6 4(d� 1)`+1, it follows

that
X

~E1

[ · · · ] 6 4(d� 1)`+1 2Mp
N⌘

�1p
d� 1

.

For (x, y) = (ak, bk) 2 ~E2. By (3.144), distG̃(T)(bk, ck) > 2r, and thus |G̃(T)
b
k

c
k

| 6

27K3|msc|qr.
X

~E2

[ · · · ] 6 2Mp
N⌘

27K3|msc|qrp
d� 1

.

For (x, y) = (bk, ak) 2 ~E3. By (3.144), distG̃(T)(ak, ck) > 2r, and thus |G̃(T)
a
k

c
k

| 6

27K3|msc|qr.
X

~E3

[ · · · ] 6 2Mp
N⌘

27K3|msc|qrp
d� 1

.

For (x, y) = (bj, aj) 2 ~E4, by (3.144) with ck replaced by cj, we have the distance

estimates

distG̃(T)(cj, {a1, . . . , aµ, b1, . . . , b⌫} > 2r.
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In particular, distĜ(T)(cj, bj) > distG̃(T)(cj, bj) > 2r, and |Ĝ(T)
c
j

b
j

| 6 2K|msc|qr by

(3.142). Thus
X

~E4

[ · · · ] 6 2K|msc|qrp
d� 1

�1.

For (x, y) 2 ~E5, since | ~E5| 6 µ 6 2(d� 1)`+1, it follows that

X

~E5

[ · · · ] 6 2(d� 1)`+1 2Mp
N⌘

�1p
d� 1

.

The above discussion combined with (3.149) leads to the estimate

|G̃(T)
c
j

c
k

| 6 Mp
N⌘

�

2 + 29K3qr+1 + 12(d� 1)`+1/2�1

�

+ 2Kqr+1�1 6 212K5|msc|q3r+2,

provided that
p
N⌘q3r+2 > M . ⇤

3.8. Stability estimate for the switched graph.

Proposition 3.32. Under the assumptions of Propositions 3.26, for S 2 F (G) (as

in Section 3.6.1) such that G̃ = TS(G) 2 ⌦̄ (as in Section 3.1.2), the Green’s function

of the switched graph satisfies the weak stability estimate that for all i, j 2 [[N ]],

|G̃ij(z)| 6 |G̃jj(z)| 6 2.(3.156)

Moreover, the o↵-diagonal entries of the Green’s function satisfy the following im-

proved estimates around vertex 1. For all vertices x 2 [[2, N ]],

�

�

�

G̃1x � P1x(Er(1, x, G̃))
�

�

�

6 (! + 1)22!+14K3|msc|qr+1.(3.157)

For all estimates, we assume that
p
d� 1 > max{(!+1)222!+10, 28(!+1)K}, !02q` ⌧

1 and
p
N⌘q3r+2 > M .

3.8.1. Preparation of the proof. As in (3.135), we denote by @ET the boundary edges

of T in the switched graph G̃, and the corresponding boundary vertex set by I =

{ã1, ã2, . . . , ãµ}. Let J be the index set of Proposition 3.29. Throughout the following
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proof, C represents constants that may di↵er from line to line, but depends only on

the constant K of (3.99) and the excess !. As in previous proofs, we follow the

structure described below (3.71).

Localization. To prove Proposition 3.47, we replace Pij(Er(i, j, G̃)) by a vertex inde-

pendent Green’s function Pij according to Remark 2.8, applied with G̃0 = B3r(1, G̃)
and X = B2r(1, G̃). We abbreviate

G̃1 = TE(G̃0), P̃ = G(G̃1), G̃(T)
1 = TE(G̃(T)

0 ), P̃ (T) = G(G̃(T)
1 ),

Notice that G̃(T)
1 is the same as removing the vertices T from G̃1, and thus P̃ (T) =

G(T)(G̃1).

Claim 3.33. Let k 2 J (as in Section 3.7.1), and let K be the connected component

of G̃0 containing ãk = ck. Then

{m 2 [[1, µ]] : ãm 2 K} = {k},(3.158)

and

max
i2K

distG̃(T)(i, ãk) 6 3r.(3.159)

Proof. (3.158) follows from the condition (3.139) in the definition of J , i.e. from

distG̃(T)(ãk, {ãm : m 2 [[1, µ]]\{k}}) > R/4 > 6r. (3.159) follows from (3.158) and the

construction of the subgraph G̃0. ⇤

Verification of assumptions in Proposition 2.7. As subgraphs of G̃, both G̃0 and G̃(T)
0

have excess at most !. The deficit function g of G̃0 vanishes. By Proposition 3.10, on

each connected components of G̃(T)
0 , the deficit function obeys

P

g(v) 6 ! + 1 6 8!.

Thus the assumptions for (2.14) are verified for both graphs G̃0 and G̃(T)
0 , and we have
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(2.16):

�

�

�

Pij(Er(i, j, G̃))� P̃ij

�

�

�

,
�

�

�

Pij(Er(i, j, G̃(T)))� P̃ (T)
ij

�

�

�

6 22!+3|msc|qr+1(3.160)

for i, j 2 X, provided that
p
d� 1 > 2!+2.

Starting point. The normalized adjacency matrices of G̃ and G̃1 respectively have the

block form

2

4

H B̃0

B̃ D

3

5 ,

2

4

H B̃0
1

B̃1 D1

3

5 ,

where H is the normalized adjacency matrix for T , and B̃ (respectively B̃1) corre-

sponds to the edges from I to T`, where I is the set of boundary vertices of T in

the switched graph G̃ as defined in (3.135), and T` is the inner vertex boundary of

T as in (3.47). To be precise, the nonzero entries of B̃ and B̃1 occur for the indices

(i, j) 2 I⇥T` and take values 1/
p
d� 1. Notice that B̃ij = (B̃1)ij; in the rest of this

section we will therefore not distinguish B and B̃.

By the Schur Complement formula (B.3), we have

G̃|T = (H � z � B̃0G̃(T)B̃)�1,(3.161)

P̃ |T = (H � z � B̃0P̃ (T)B̃)�1,(3.162)

and, by the resolvent identity (B.1), the di↵erence of (3.161) and (3.162) is

(3.163) G̃|T � P̃ |T = (G̃� P̃ )B̃0(G̃(T) � P̃ (T))B̃P̃ + P̃ B̃0(G̃(T) � P̃ (T))B̃P̃ .

In terms of the random walk heuristic described in Section ??, (3.163) has the

interpretation that only walks that exit T contribute (see Figure 11). We will adopt

suggestive terminology corresponding to the random walk picture below. By Propo-

sition 3.29, the Green’s function G̃(T) is small between most vertices in I. This is the
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1

`
x

T

I

Figure 11. Only walks that exit T contribute to (3.163).

main reason that the right-hand side of (3.163) is small. In the following, we analyze

the various contributions precisely.

3.8.2. Boundary. The following lemma estimates the weight of “walks” from x 2 T to

T`, the inner vertex boundary of T . It depends on the distance of x to the boundary,

or equivalently that from x to 1.

Lemma 3.34. Assume that G̃0 has excess at most !. For vertices x 2 T`1, i.e. x is

at distance `1 from vertex 1, we have

X

k2[[1,µ]]

|P̃l
k

x| 6 (! + 1)2!+3(`1 + 1)|msc|`�`1+1(d� 1)(`�`1)/2+1.(3.164)

For vertices x 2 T`1 and y 2 T`2, with `1 > `2, we have

X

k2[[1,µ]]

|P̃l
k

x||P̃l
k

y| 6 (! + 1)222!+6(`1 � `2 + 2)

(d� 1)(`1�`2)/2�1
|msc|2`�`1�`2+2.(3.165)

The proof of the lemma uses the following combinatorial estimate on the distances

of a vertex x to T` (which is the inner vertex boundary of T ).

Lemma 3.35. Assume that the graph G̃0 = B3r(1,G) has excess at most !. Given

x 2 T`1, let Lx be the multiset consisting of 2(! + 1)(d� 1)`�`3 copies of the number
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q`+`1�2`3 for `3 2 [[0, `1]], and let Kx be the multiset Kx = {qdistG̃0 (x,i) : i 2 T`}. Then

the k-th largest number of Kx is smaller than or equal to the k-th largest number of

Lx.

We postpone the proof of the lemma to Appendix A.3. Given the lemma, the proof

of Lemma 3.34 is completed as follows.

Proof of Lemma 3.34. To prove (3.164), we use

X

k2[[1,µ]]

|P̃l
k

x| 6 (d� 1)
X

i2T
`

|P̃ix| 6 2!+2(d� 1)|msc|
X

i2T
`

qdistG̃0 (x,i),

by Proposition 2.7. Defining the multiset Lx as in Lemma 3.35, the inequality con-

tinuous with

2!+2(d� 1)|msc|
X

i2T
`

qdistG̃0 (x,i) 6 2!+2(d� 1)|msc|(2! + 2)
`1
X

`3=0

(d� 1)`�`3q`+`1�2`3

6 (! + 1)2!+3(`1 + 1)|msc|`�`1+1(d� 1)(`�`1)/2+1.

This finishes the proof of (3.164).

For the proof of (3.165), we use

X

k2[[1,µ]]

|P̃l
k

x||P̃l
k

y| 6 (d� 1)
X

i2T
`

|P̃ix||P̃iy| 6 22!+4|msc|2(d� 1)
X

i2T
`

qdistG̃0 (x,i)qdistG̃0 (y,i).

We define the multisets Lx and Ly as in Lemma 3.35. More precisely, Lx consists of

2(!+ 1)(d� 1)`�`3 copies of q`+`1�2`3 for `3 2 [[0, `1]], and Ly consists of 2(!+ 1)(d�



113

1)`�`3 copies of q`+`2�2`3 for `3 2 [[0, `2]]. By the rearrangement inequality, we have

X

i2T
`

qdistG̃0 (x,i)qdistG̃0 (y,i)

6 4(! + 1)2
 

`2
X

`3=0

(d� 1)`�`3q`+`1�2`3q`+`2�2`3 +
`1
X

`3=`2+1

(d� 1)`�`3q`+`1�2`3q`�`2

!

6 4(! + 1)2(`1 � `2 + 2)

(d� 1)(`1�`2)/2
|msc|2`�`1�`2 .

This finishes the proof of (3.165). ⇤

Remark 3.36. In the worst case, when x = 1, we have

X

k2[[1,µ]]

|P̃l
k

x| 6 (! + 1)2!+3|msc|`+1(d� 1)`/2+1.(3.166)

Moreover, when x, y 2 T`1, we have

X

k2[[1,µ]]

|P̃l
k

x||P̃l
k

y| 6 (! + 1)222!+7|msc|2`�2`1+2(d� 1).(3.167)

These special cases will be used below.

3.8.3. Outside T. The following proposition shows that the weight of “walks” outside

T is small. It essentially follows from Proposition 3.29.

Proposition 3.37. Under the assumptions of Proposition 3.32, for any vertex j 2
[[N ]] \ T such that distG̃(1, j) 6 2r, we have

X

k2[[1,µ]]

|G̃(T)
ã
k

j � P̃ (T)
ã
k

j | 6 C!0|msc|qr.(3.168)

Moreover, for any vertex j 2 [[N ]] \ T such that distG̃(1, j) > 2r, we have

X

k2[[1,µ]]

|G̃(T)
ã
k

j| 6 C!0|msc|qr,(3.169)
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and

X

k 6=m2[[1,µ]]

|G̃(T)
ã
k

ã
m

� P̃ (T)
ã
k

ã
m

| 6 C!02|msc|qr,(3.170)

where the constants C depend only on the excess ! and K (from Proposition 3.26).

For all estimates, we assume
p
d� 1 > max{(! + 1)222!+10, 28(! + 1)K}, !0qr ⌧ 1

and
p
N⌘q3r+2 > M .

Claim 3.38. Let j 2 [[N ]] \ T be as in the statement of Proposition 3.37. Then

|{k 2 [[1, ⌫]] : distG̃(T)(j, ak) 6 R/4}| 6 5!,(3.171)

|{k 2 [[1, ⌫]] : distG̃(T)(j, ãk) 6 R/2}| 6 ! + 1.(3.172)

Proof. The first claim follows from (3.54). The second one follows from (3.30) by con-

sidering the graph G̃, since by our assumption G̃ 2 ⌦̄, the R-neighborhood BR(1, G̃)
has excess at most !. ⇤

Proof of Proposition 3.37. Recall the index set J ⇢ [[1, ⌫]] defined previously in Sec-

tion 3.7.1. To prove (3.168), we decompose [[1, µ]] according to the relations between

{ak, bk, ck} and vertex j as [[1, µ]] = J1 [ J2, where

J1 ={k 2 J : j 6⇠ bk, distG̃(T)(j, ak) > 2r, and distG̃(T)(j, ãk) > R/2},

J2 =[[1, µ]] \ J1.

By the defining relation (3.103) of F (G) and Proposition 3.29, we have |J | > ⌫�!0�
6! > µ � !0 � 9!. Combining with (3.171), (3.172) and (3.61), which states that

|{k 2 [[1, ⌫]] : j ⇠ bk}| < !0, we get

|J1| > µ� 2!0 � 15!, |J2| 6 2!0 + 15!.
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Bounding by the total number of terms, we also have |J1| 6 µ 6 2(d � 1)`+1. Now,

for k 2 J1, we have ãk = ck and the conditions for (3.138) are satisfied. Moreover, for

k 2 J1, we have distG̃(T)(ãk, j) > R/2, and therefore by (3.159) the vertices ãk and j

are in di↵erent connected components of G̃(T)
0 ; it follows that |P̃ (T)

ã
k

j | = 0. Therefore,

by (3.138),

X

k2J1

|G̃(T)
ã
k

j � P̃ (T)
ã
k

j | =
X

k2J1

|G̃(T)
ã
k

j| 6 2(d� 1)`+1(212K5|msc|q2r+1) 6 213K5|msc|qr.
(3.173)

For k 2 J2, by (3.102) and (3.160),

X

k2J2

|G̃(T)
ã
k

j � P̃ (T)
ã
k

j | 6 (2!0 + 16!)(27K3 + 22!+3q)|msc|qr.(3.174)

Then (3.168) follows by combining (3.173) and (3.174).

For (3.169), again, we split the sum over J1 and over J2 as above. For k 2 J1,

similarly to (3.168), we have

X

k2J1

|G̃(T)
ã
k

j| 6 2(d� 1)`+1212K5|msc|q2r+1 6 213K5|msc|qr.(3.175)

For k 2 J2, we note that distG̃(ãk, j) > distG̃(1, j)� distG̃(1, ãk) > 2r� ` > r, so that

Pã
k

j(Er(ãk, j, G̃(T))) = 0. Therefore, by (3.102), we have

X

k2J2

|G̃(T)
ã
k

j| 6 (2!0 + 15!)27K3|msc|qr.(3.176)

Again (3.169) follows by combining (3.175) and (3.176).

For (3.170), we split the sum over

{k 6= m 2 [[1, µ]]} ={k 6= m 2 [[1, µ]] \ J} [ {k 2 [[1, µ]] \ J,m 2 J}

[{k 2 J,m 2 [[1, µ]] \ J} [ {k 6= m 2 J}.
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Since |[[1, µ]] \ J | 6 !0 + 9!, for k 6= m 2 [[1, µ]] \ J , by Proposition 3.26 and (3.160),

X

k 6=m2[[1,µ]]\J

|G̃(T)
ã
k

ã
m

� P̃ (T)
ã
k

ã
m

| 6 (!0 + 9!)2(27K3 + 22!+3q)|msc|qr.

For k 2 [[1, µ]]\J,m 2 J , by (3.158) ãk and ãm are in di↵erent connected components

of G̃(T)
0 , and thus |P̃ (T)

ã
k

ã
m

| = 0. By (3.136),

X

k2[[1,µ]]\J,m2J

|G̃(T)
ã
k

ã
m

� P̃ (T)
ã
k

ã
m

| =
X

k2[[1,µ]]\J,m2J

|G̃(T)
ij | 6(!0 + 9!)2(d� 1)`+1(29K4|msc|q2r+1)

6(!0 + 9!)210K4|msc|qr.

The same estimate holds for k 2 J,m 2 [[1, µ]]\J . For k 6= m 2 J , the same reasoning

as above gives P̃ (T)
ã
k

ã
m

= 0. By (3.137) and noticing that |J | 6 µ 6 2(d � 1)`+1, we

have

X

k 6=m2J

|G̃(T)
ã
k

ã
m

� P̃ (T)
ã
k

ã
m

| =
X

k 6=m2J

|G̃(T)
ã
k

ã
m

| 6 4(d� 1)2`+2212K5|msc|q3r+2 6 214K5|msc|qr.

Now (3.170) follows by combining the above four cases. ⇤

3.8.4. Proof of (3.157). The proof of (3.157) follows essentially from (3.163) and the

fact the di↵erence of G̃(T) and P̃ (T) is small (Proposition 3.26).

Claim 3.39. For all x 2 T,

|G̃1x � P̃1x| 6 (! + 1)22!+13K3|msc|qr.

Moreover, for x 2 T \ {1}, we have the stronger estimate

|G̃1x � P̃1x| 6 (! + 1)22!+14K3|msc|qr+1.(3.177)
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Proof. Let �1 = maxx2T |G̃1x � P̃1x|. Then the first term on the right-hand side of

(3.163) is bounded by

|((G̃� P̃ )B̃0(G̃(T) � P̃ (T))B̃P̃ )1x| 6 �1

d� 1

X

k2[[1,µ]]

X

m2[[1,µ]]

|G̃(T)
ã
k

ã
m

� P̃ (T)
ã
k

ã
m

||P̃l
m

x|

6 �1(C!0qr+1)p
d� 1

X

m2[[1,µ]]

|P̃l
m

x| 6 �1(C!0qr+1)((! + 1)2!+3|msc|`+1(d� 1)(`+1)/2)

6 C!0|msc|q`+1�1,

(3.178)

where we used (3.168) and (3.166). Next we bound the second term on the right-hand

side of (3.163). For, say x 2 T`1 , we have

|(P̃ B̃0(G̃(T) � P̃ (T))B̃P̃ )1x| 6 1

d� 1

X

k2[[1,µ]]

|P̃1l
k

||G̃(T)
ã
k

ã
k

� P̃ (T)
ã
k

ã
k

||P̃l
k

x|

+
1

d� 1

X

k 6=m2[[1,µ]]

|P̃1l
k

||G̃(T)
ã
k

ã
m

� P̃ (T)
ã
k

ã
m

||P̃l
m

x|.

(3.179)

By (2.12) and (2.15), for any k,m 2 [[1, µ]],

|P̃1l
k

| 6 2!+2|msc|q`, |P̃l
m

x| 6 2|msc|.(3.180)

We can estimate the first term in (3.179) in the following way:

1

d� 1

X

k2[[1,µ]]

|P̃1l
k

||G̃(T)
ã
k

ã
k

� P̃ (T)
ã
k

ã
k

||P̃l
k

x| 6 2!+2q`+1(27K3 + 22!+3q)qr+1
X

k2[[1,µ]]

|P̃l
k

x|

6 (! + 1)22!+5(`1 + 1)(27K3 + 22!+3q)qr+`1 ,
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where in the first inequality we used (3.180), (3.102) and (3.160), in the second

inequality we used estimate (3.164). For the second term in (3.179), we have

1

d� 1

X

k 6=m2[[1,µ]]

|P̃1l
k

||G̃(T)
ã
k

ã
m

� P̃ (T)
ã
k

ã
m

||P̃l
m

x|

6 2!+2q`+1
X

k 6=m2[[1,µ]]

|G̃(T)
ã
k

ã
m

� P̃ (T)
ã
k

ã
m

|(2q) 6 C!02qr+`+2,

where we used (3.170) and (3.180). It follows that

|G̃1x � P̃1x| 6 C!0|msc|q`+1�1 + (! + 1)22!+5(`1 + 1)(27K3 + 22!+3q)qr+`1 + C!02qr+`+2.

(3.181)

By taking the maximum over x 2 T and rearranging it, we have �1 6 (!+1)22!+13K3|msc|qr,
provided that !02q` ⌧ 1 and

p
d� 1 > (! + 1)222!+10.

For (3.177), it follows from (3.181), the estimate of �1 and `1 > 1,

|G̃1x � P̃1x| 6 C!0qr+`+1 + (! + 1)22!+6(27K3 + 22!+3q)qr+1 + C!02qr+`+2

6 (! + 1)22!+6(27K3 + 1)qr+1,
(3.182)

provided that !02q` ⌧ 1 and
p
d� 1 > (! + 1)222!+10. ⇤

Proof of (3.157). For x 2 T \ {1}, the estimate (3.157) follows from (3.182) and

(3.160):

�

�

�

G̃1x � P1x(Er(1, x, G̃))
�

�

�

6
�

�

�

G̃1x � P̃1x

�

�

�

+
�

�

�

P1x(Er(1, x, G̃))� P̃1x

�

�

�

6 (! + 1)22!+6(27K3 + 1)qr+1 + 22!+3|msc|qr+1 6 (! + 1)22!+14K3|msc|qr+1.

Thus it only remains to prove (3.157) for x 62 T.

For x 2 B2r(1, G̃) \ T, we have by the Schur complement formula (B.4):

G̃ = �G̃B̃0G̃(T), P̃ = �P̃ B̃0P̃ (T).
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Therefore, by taking the di↵erence of these two equations,

(3.183)

|G̃1x � P̃1x| 6 1p
d� 1

X

k2[[1,µ]]

|G̃1l
k

||P̃ (T)
ã
k

x � G̃(T)
ã
k

x|+
1p
d� 1

X

k2[[1,µ]]

|G̃1l
k

� P̃1l
k

||P̃ (T)
ã
k

x|.

For the first term in (3.183), notice that by combining (3.180) and (3.177), we have

|G̃1l
k

| 6 |G̃1l
k

� P̃1l
k

|+ |P̃1l
k

| 6 2!+3|msc|q`.(3.184)

The first term in (3.183) is bounded by

1p
d� 1

X

k2[[1,µ]]

|G̃1l
k

||P̃ (T)
ã
k

x � G̃(T)
ã
k

x| 6 Cq`+1
X

k2[[1,µ]]

|P̃ (T)
ã
k

x � G̃(T)
ã
k

x| 6 C!0qr+`+1,

where we used (3.168). For the second term in (3.183), since G̃ 2 ⌦̄, its radius-R

neighborhood of vertex 1 has excess at most !. By (3.30) there are at most ! + 1

indices k 2 [[1, µ]], such that ãk is in the same connected component as x in the graph

G̃0. Thus, P̃
(T)
ã
k

x are zero for all k 2 [[1, µ]] except for at most ! + 1 of them, and they

are bounded |P̃ (T)
ã
k

x| 6 2|msc| by (2.15).

1p
d� 1

X

k2[[1,µ]]

|G̃1l
k

� P̃1l
k

||P̃ (T)
ã
k

x| 6 (! + 1)222!+15K3|msc|qr+2,

where we used (3.177). Combining the arguments above, they lead to

|G̃1x � P̃1x| 625K3|msc|qr+1 + C!0qr+`+1,

given that
p
d� 1 > (!+1)222!+10. The estimate (3.157) for x 2 B2r(1, G̃)\T follows,

provided !02q` ⌧ 1.

For x /2 B2r(1, G̃), we have

|G̃1x| 6 1p
d� 1

X

k2[[1,µ]]

|G̃1l
k

||G̃(T)
ã
k

x| 6 2!+3q`+1
X

k2[[1,µ]]

|G̃(T)
ã
k

x| 6 C!0qr+`+1 ⌧ qr+1,

(3.185)
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where we used (3.184) and (3.169). This finishes the proof of (3.157). ⇤

3.8.5. Proof of (3.156).

Proof of (3.156). For x, y 2 T, we denote � = maxx,y2T{|G̃xy � P̃xy|}. Then, by the

Schur complement formula (3.163),

|G̃xy � P̃xy| 6 |((G̃� P̃ )B̃0(G̃(T) � P̃ (T))B̃P̃ )xy|+ |(P̃ B̃0(G̃(T) � P̃ (T))B̃P̃ )xy|.
(3.186)

The estimate of the first term follows the same argument as that for (3.178):

|((G̃� P̃ )B̃0(G̃(T) � P̃ (T))B̃P̃ )xy| 6 C!0|msc|q`+1� 6 �/2.

For the second term, similarly, we have

�

�

�

(P̃ B̃0(G̃(T) � P̃ (T))B̃P̃ )xy
�

�

�

6 1

d� 1

X

k2[[1,µ]]

|P̃xl
k

||G̃(T)
ã
k

ã
k

� P̃ (T)
ã
k

ã
k

||P̃l
k

y|+ 1

d� 1

X

k 6=m2[[1,µ]]

|P̃xl
k

||G̃(T)
ã
k

ã
m

� P̃ (T)
ã
k

ã
m

||P̃l
m

y|

6 C|msc|qr
d� 1

X

k2[[1,µ]]

|P̃xl
k

||P̃l
k

y|+ (Cq)2
X

k 6=m2[[1,µ]]

|G̃(T)
ã
k

ã
m

� P̃ (T)
ã
k

ã
m

| 6 C!02|msc|qr,

where we bounded |P̃xl
k

|, |P̃l
m

y| 6 C|msc| and used the estimates (3.102), (3.167) and

(3.170). Therefore, by taking supremum of both sides of (3.186) and rearranging, we

have � 6 C!02|msc|qr.
For x 2 T and y 2 B2r(1, G̃) \ T, the same argument as for (3.183) implies:

|G̃xy � P̃xy| 6 1p
d� 1

X

k2[[1,µ]]

|G̃xl
k

||P̃ (T)
ã
k

x � G̃(T)
ã
k

x|+
1p
d� 1

X

k2[[1,µ]]

|G̃xl
k

� P̃xl
k

||P̃ (T)
ã
k

x|.

6 Cq
X

k2[[1,µ]]

|P̃ (T)
ã
k

y � G̃(T)
ã
k

y|+ C!02qr+1
X

k2[[1,µ]]

|P̃ (T)
ã
k

y| 6 C!02|msc|qr+1.

where we bounded |G̃xl
k

| 6 C|msc|, and used the estimate (3.168), the bound for �

and the fact that for all k 2 [[1, µ]] with at most ! + 1 exceptions, P̃ (T)
ã
k

y are zero.
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For x 2 T and y /2 B2r(1, G̃), similarly, we have:

|G̃xy| 6 1p
d� 1

X

k2[[1,µ]]

|G̃xl
k

||G̃(T)
ã
k

y| 6 Cq
X

k2[[1,µ]]

|G̃(T)
ã
k

y| 6 C!0|msc|qr+1,

where we bounded |G̃xl
k

| 6 C|msc| and used the estimate (3.169).

For x, y 2 B2r(1, G̃)/T, we have the Schur complement formula (B.3):

G̃ =G̃(T) + G̃(T)B̃G̃B̃0G̃(T),

P̃ =P̃ (T) + P̃ (T)B̃P̃ B̃0P̃ (T).

By taking the di↵erence,

G̃� P̃ =G̃(T) � P̃ (T) + (G̃(T) � P̃ (T))B̃G̃B̃0G̃(T)

+P̃ (T)B̃(G̃� P̃ )B̃0G̃(T) + P̃ (T)B̃P̃ B̃0(G̃(T) � P̃ (T)).

Notice that |G̃(T)
xy � P̃ (T)

xy | 6 C|msc|qr, |G̃l
k

l
m

| 6 C|msc|, |P̃l
k

l
m

| 6 C|msc| and |G̃l
k

l
m

�
P̃l

k

l
m

| 6 C!02|msc|qr, we have

|G̃xy � P̃xy| 6 C|msc|qr +
X

k,m2[[1,µ]]

|G̃(T)
xã

k

� P̃ (T)
xã

k

|C|msc|
d� 1

|G̃(T)
ã
m

y|

+
X

k,m2[[1,µ]]

|P̃ (T)
xã

k

|C!02|msc|qr
d� 1

|G̃(T)
ã
m

y|+
X

k,m2[[1,µ]]

|P̃ (T)
xã

k

|C|msc|
d� 1

|G̃(T)
ã
m

y � P̃ (T)
ã
m

y|.
(3.187)

The following estimates follow from Proposition 3.37:

X

k2[[1,µ]]

|P (T)
xã

k

|,
X

m2[[1,µ]]

|G̃(T)
ã
m

y| 6 C|msc|,

X

k2[[1,µ]]

|G̃(T)
xã

k

� P (T)
xã

k

|,
X

m2[[1,µ]]

|G̃(T)
ã
m

y � P (T)
ã
m

y| 6 C!0|msc|qr.

Therefore (3.187) simplifies to

|G̃xy � P̃xy| 6 C!02|msc|qr.
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Finally, for x 62 B2r(1, G̃) or y 62 B2r(1, G̃), by symmetry we assume x 62 B2r(1, G̃), we
have

|(G̃(T)B̃G̃B̃0G̃(T))xy| 6 1

d� 1

X

k,m2[[1,µ]]

|G̃(T)
xã

k

||G̃l
k

l
m

|G̃(T)
ã
m

y|

6
X

k,m2[[1,µ]]

|G̃(T)
xã

k

|C|msc|
d� 1

|G̃(T)
ã
m

y| 6 C!0|msc|qr+2,

where we used (3.169), thus,

|G̃xy � G̃(T)
xy | 6 C!0|msc|qr+2.

Altogether we proved that

�

�

�

G̃ij � P̃ij(Er(i, j, G̃))
�

�

�

6 C|msc|!02qr ⌧ q`+1,

provided that !02q` ⌧ 1. The weak stability estimates (3.197) follows by combining

with (2.15). This finishes the proof of (3.156). ⇤

3.9. Concentration in the switched graph. The result of this section is the fol-

lowing proposition, which shows that the average of the Green’s function of G̃(T) over

the vertex boundary of T concentrates under resampling of the edge boundary of T.

This part is where the condition that the edge boundary contains � logN edges is

important.

More precisely, recall the vertex boundary I = {ã1, ã2, . . . , ãµ} of T in G̃ from

(3.135). For any finite graph H (not necessarily regular and not necessary on N

vertices), we define

(3.188) Q(H, z) =
1

Nd

X

(i,j)2 ~E

G(i)
jj (H, z),

where ~E denotes the set of oriented edges of H, and G(i)(H, z) the Green’s function of

the graph obtained fromH by removing the vertex i. Notice that we always normalize
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(3.188) by Nd, irregardless of the actual number of oriented edges in H (which can

be smaller than Nd).

Proposition 3.40. Sets ⌦+
1 (z, `) and ⌦̄ are as defined in Section 3.1.2. Let z 2 C+

and G 2 ⌦+
1 (z, `). Then there exists an event F 0(G) ⇢ F (G) (as in Section 3.6.1) with

probability PG(F 0(G)) = 1� o(N�!+�) such that for any S 2 F 0(G) with TS(G) 2 ⌦̄,

�

�

�

�

�

1

µ

µ
X

k=1

⇣

G̃(T)
ã
k

ã
k

� Pã
k

ã
k

(Er(ãk, ãk, G̃(T)))
⌘

�
⇣

Q(G̃)�msc

⌘

�

�

�

�

�

6 2(logN)1/2+�|msc|qrp
µ

,

(3.189)

provided that
p
d� 1 > max{(!+1)222!+10, 28(!+1)K}, !02q` ⌧ 1 and

p
N⌘q3r+2 >

M .

To prove Proposition 3.40, in Lemma 3.42, we first show a similar statement for

the unswitched graph G(T) in which the problem becomes a concentration problem

of independent random variables. Then we prove Proposition 3.40 by comparision,

using the estimates of Proposition 3.26, and the fact that the change from Q(G̃, z) to
Q(G(T), z) is small (Lemma 3.43). Proposition 3.26 is applicable since, by the defini-

tion of set ⌦+
1 (z, `) in Section 3.1, any graph G 2 ⌦+

1 (z, `) satisfies the assumptions

in Proposition 3.26 with K = 210.

The following proposition is used repeatedly in this section. It follows from exactly

the same argument as Proposition 3.22, and we therefore omit the proof.

Lemma 3.41. Given z 2 C+, a constant K 0 > 2, and G 2 ⌦̄. Let H be one of the

graphs G(T), Ĝ(T), G̃(T) or G̃, and suppose that

|Gij(H, z)� Pij(Er(i, j,H), z)| 6 K 0|msc|qr.(3.190)

Then, for any vertices i, j in H(x), we have

|Gij(H(x), z)� Pij(Er(i, j,H(x)), z)| 6 2K 0|msc|qr,(3.191)
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provided that
p
d� 1 > (! + 1)222!+10. Here all graphs have deficit function g =

d� deg, and we recall that H(x) is the graph obtained from H by removing the vertex

x.

3.9.1. Estimate for the unswitched graph. The next lemma shows concentration of a

certain average of the Green’s function in the unswitched graph.

Lemma 3.42. For any z 2 C+ and G 2 ⌦+
1 (z, `), we define the set F 0(G) ⇢ F (G)

(as in Section 3.6.1) such that

�

�

�

�

�

1

µ

µ
X

k=1

�

G(Tb
k

)
c
k

c
k

� Pc
k

c
k

(Er(ck, ck,G(Tb
k

)))
�� �Q(G(T))�msc

�

�

�

�

�

�

6 (logN)1/2+�|msc|qrp
µ

.

(3.192)

Then PG(F 0(G)) = 1� o(N�!+�).

Proof. Let

Xk = G(Tb
k

)
c
k

c
k

� Pc
k

c
k

(Er(ck, ck,G(Tb
k

))), k 2 [[1, µ]].

Conditioned on the graph G(T), the random sets ~S1, ~S2, . . . , ~Sµ are independent and

identically distributed, and thusX1, X2, . . . , Xµ are i.i.d random variables. By Lemma 3.41

and the assumption that G 2 ⌦+
1 (z, `), for any k 2 [[1, µ]], we have

|Xk| 6 2K|msc|qr,

whereK = 210. By Azuma’s inequality for independent random variables, it therefore

follows that

PG

 

�

�

�

�

�

1

µ

µ
X

k=1

Xk � E[Xk]

�

�

�

�

�

> 2Kt|msc|qrp
µ

!

6 e�t2/2.(3.193)

In the following, we still need to estimate E[Xk]. Let ~E be the set of oriented edges

of G(T). By definition, T is the ` neighborhood of the vertex 1, and by the trivial
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bound it intersects at most d + d(d � 1) + · · · + d(d � 1)` 6 2(d � 1)`+1 edges.

Thus Nd � 4(d � 1)`+1 6 | ~E| 6 Nd. Using that, by Lemma 3.41, we also have

|G(Tj)
ii � Pii(Er(i, i,G(Tj)))| 6 2K|msc|qr, it follows that

E[Xk] =
1

| ~E|
X

(i,j)2 ~E

G(Tj)
ii � Pii(Er(i, i,G(Tj)))

=
1

Nd

X

(i,j)2 ~E

G(Tj)
ii � Pii(Er(i, i,G(Tj))) + O6

✓

8K|msc|qr(d� 1)`+1

Nd

◆

= Q(G(T))� 1

Nd

X

(i,j)2 ~E

Pii(Er(i, i,G(Tj))) + O6

✓

8K

N

◆

.(3.194)

Moreover, since by assumption G 2 ⌦̄, all except for at most N � vertices have radius-

R tree neighborhoods in G, and therefore

|{i 2 [[1, N ]] \ T : Br(i,G(T)) is not a d-regular tree}|

6 |{i 2 [[1, N ]] : Br(i,G) is not a tree}|+ |{i 2 [[1, N ]] : distG(i,T) 6 r}|

6 N � + 2(d� 1)r+` 6 2N �.

For the vertices i contained in the set on the left-hand side, we have the bound

|Pii(Er(i, i,G(Tj)))| 6 2|msc| from (2.13). For the other vertices i, whose r-neighborhood

in G(T) is a d-regular tree, we have the equality Pii(Er(i, i,G(Tj))) = msc. Therefore

(3.195)
1

Nd

X

(i,j)2 ~E

Pii(Er(i, i,G(Tj))) = msc +O6(8N
�1+�).

Combining (3.194), (3.195), and taking t = (logN)1/2+�/(4K) in (3.193), we get

PG

 

�

�

�

�

�

1

µ

µ
X

i=1

Xi �
�

Q(G(T))�msc

�

�

�

�

�

�

> 2Kt|msc|qrp
µ

+
10

N1��

!

6 e�(logN)1+2�/(32K2).
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Since N�1+� ⌧ (logN)1/2+�|msc|qr/pµ, it follows that (3.192) holds with overwhelm-

ing probability, and we can define F 0(G) ⇢ F (G) as claimed with probability

PG(F
0(G)) > PG(F (G))� e�(logN)1+2�/(32K2) = 1� o(N�!+�),

where we used (3.104). This completes the proof. ⇤

3.9.2. Changing Q(G(T)) to Q(G̃). The next lemma shows that we can replace Q(G(T))

by Q(G) up to a small error. It follows from the general insensitivity of the quantity

Q to small changes of the graph.

Lemma 3.43. For z 2 C+, G 2 ⌦+
1 (z, `) and S 2 F (G) with TS(G) 2 ⌦̄, we have

|Q(G(T), z)�Q(G̃, z)| 6 36d2`+2

N⌘
,(3.196)

provided that
p
d� 1 > max{(!+1)222!+10, 28(!+1)K}, !02q` ⌧ 1 and

p
N⌘q3r+2 >

M .

The proof of Lemma 3.43 uses Lemma 3.44 below, which is a direct consequence

of the Ward identity (B.6).

Lemma 3.44. Given a graph G with degree bounded by d. We denote by ~E the set

of oriented edges of G, by H its normalized adjacency matrix, and by G = (H � z)�1

its Green’s function. Then, if for some z 2 C+ and any (i, j) 2 ~E, it holds that

|Gij(z)| 6 |Gjj(z)| 6 2,(3.197)

then for any vertex x 2 G,

(3.198)
X

(i,j)2 ~E

|G(j)
ix (z)|2 6

8d

⌘
.
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Proof. By the Schur complement formula (B.5) and the Ward identity (B.6), we

obtain

X

(i,j)2 ~E

|G(j)
ix |2 =

X

(i,j)2 ~E

�

�

�

�

Gix � GijGjx

Gjj

�

�

�

�

2

6
X

(i,j)2 ~E

2 |Gix|2 + 2

�

�

�

�

GijGjx

Gjj

�

�

�

�

2

6 4
X

(i,j)2 ~E

|Gix|2 6 4
X

i

degG(i)|Gix|2 6 4dIm[Gxx]

⌘
6 8d

⌘
,

as claimed. ⇤

We will prove Lemma 3.43 in two steps, by proving

(3.199) |Q(G(T))�Q(Ĝ(T))| 6 dµ

2N⌘
, |Q(Ĝ(T))�Q(G̃(T))| 6 dµ

2N⌘
,

and

(3.200) |Q(G̃(T))�Q(G̃)| 6 34d2`+2

N⌘
.

Then (3.196) follows by combining (3.199) and (3.200), and using that µ 6 2(d�1)`+1.

In preparation, we recall from Proposition 3.32 that, for all vertices i, j 2 [[N ]],

(3.201) |G̃ij(z)| 6 |G̃jj(z)| 6 2.

Proof of (3.199). The proofs of both estimates in (3.199) are analogous, and we only

prove the first one. Denote by ~E the set of oriented edges of Ĝ(T), and by � =
P⌫

k=1(ebkck + ec
k

b
k

)/
p
d� 1 the di↵erence of the normalized adjacency matrices of

the graphs Ĝ(T) and G(T). Then by the resolvent formula (B.1),

X

(i,j)2 ~E

|Ĝ(Tj)
ii �G(Tj)

ii | 6
X

x,y

X

(i,j)2 ~E

|Ĝ(Tj)
ix �xyG

(Tj)
yi |

6
X

x,y

�xy

0

@

X

(i,j)2 ~E

|Ĝ(Tj)
ix |2

X

(i,j)2 ~E

|G(Tj)
yi |2

1

A

1/2

6 16dµ

⌘
p
d� 1

,
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where we used (3.198) (and that both graphs G(T) and Ĝ(T) satisfy condition (3.197)

by the definition of ⌦+
1 (z, `) and (3.100)). Therefore,

�

�

�

Q(G(T))�Q(Ĝ(T))
�

�

�

6 1

Nd

X

k2[[1,⌫]]

|G(Tc
k

)
b
k

b
k

+G(Tb
k

)
c
k

c
k

|+ 1

Nd

X

(i,j)2 ~E

|Ĝ(Tj)
ii �G(Tj)

ii |

6 4⌫|msc|
Nd

+
16dµ

N⌘
p
d� 1

6 dµ

2N⌘
,

(3.202)

where in the estimate of the first term, we used |G(Tc
k

)
b
k

b
k

|, |G(Tb
k

)
c
k

c
k

| 6 2|msc| which
follows from combining (3.11), Lemma 3.41, and (2.13). ⇤

Proof of (3.200). The normalized adjacency matrices of G̃ takes the block form

2

4

H B̃0

B̃ D

3

5 ,

where H is the normalized adjacency matrix for T , and B̃ corresponds to the edges

from I to T`, where I is the set of boundary vertices of T in the switched graph G̃ as

defined in (3.135). We denote by ~E the set of oriented edges of G̃(T). By the Schur

complement formula (B.3), we have

X

(i,j)2 ~E

|G̃(Tj)
ii � G̃(j)

ii | 6
1

d� 1

X

k,m2[[1,µ]]

X

(i,j)2 ~E

|G̃(Tj)
iã

k

G̃(j)
l
k

l
m

G̃(Tj)
ã
m

i |.
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It follows from (3.201) and (B.5) that |G̃(j)
l
k

l
m

| 6 4. Therefore the above expression is

bounded by

X

(i,j)2 ~E

|G̃(Tj)
ii � G̃(j)

ii | 6
4

d� 1

X

k,m2[[1,µ]]

X

(i,j)2 ~E

|G̃(Tj)
iã

k

G̃(Tj)
ã
m

i |

6 4

d� 1

X

k,m2[[1,µ]]

0

@

X

(i,j)2 ~E

|G̃(Tj)
iã

k

|2
X

(i,j)2 ~E

|G̃(Tj)
ã
m

i |2
1

A

1/2

6 32dµ2

⌘(d� 1)
6 32d2`+2

⌘
,

where we used (3.198) (since G̃(T) satisfies condition (3.197) thanks to the definition

of ⌦+
1 (z, `) and (3.102)). Therefore, we have

�

�

�

Q(G̃(T))�Q(G̃)
�

�

�

6 1

Nd

X

{i,j} incident to T

|G̃(j)
ii + G̃(i)

jj |+
1

Nd

X

(i,j)2 ~E

|G̃(Tj)
ii �G(j)

ii |

6 16(d� 1)`+1

Nd
+

32d2`+2

N⌘
6 34d2`+2

N⌘
,

(3.203)

where for the first term we used |G̃(j)
ii |, |G̃(i)

jj | 6 4 from (3.201) and (B.5) . ⇤

3.9.3. Adding of switched vertices. Recall the index set J ⇢ [[1, ⌫]] from Proposi-

tion 3.29. In this subsection, we show that the following lemma.

Lemma 3.45. For z 2 C+, G 2 ⌦+
1 (z, `) and S 2 F (G) with TS(G) 2 ⌦̄, for any

k 2 J , we have

(3.204) |Ĝ(Tb
k

)
c
k

c
k

�G(Tb
k

)
c
k

c
k

| 6 16q2r

and

(3.205) |G̃(T)
c
k

c
k

� Ĝ(Tb
k

)
c
k

c
k

| 6 210K4|msc|q2r,
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where K = 210. For both estimates, we assume
p
d� 1 > max{(!+1)222!+10, 28(!+

1)K}, !0qr ⌧ 1 and
p
N⌘q2r > M .

To prove Lemma 3.45 we need the estimates summarized in the following lemma.

Lemma 3.46. Let z 2 C+, G 2 ⌦+
1 (z, `), and S 2 F (G) with TS(G) 2 ⌦̄. Then for

any index k 2 J , the vertex ck is far away from {a1, . . . , aµ, b1, . . . , b⌫}:

distĜ(T)(ck, {a1, . . . , aµ, b1, . . . , b⌫}) > distG̃(T)(ck, {a1, . . . , aµ, b1, . . . , b⌫}) > 2r.

(3.206)

Moreover, for any x 2 {a1, . . . , aµ, b1, . . . , b⌫},

|Ĝ(T)
c
k

x| 6 2K|msc|qr, |G̃(T)
c
k

x| 6 27K3|msc|qr, |Ĝ(T)
b
k

b
k

| > |msc|/2,(3.207)

where K = 210 and we assume that
p
d� 1 > max{(! + 1)222!+10, 28(! + 1)K},

!0qr ⌧ 1 and
p
N⌘ > M(d� 1)`+1.

Proof. (3.206) is (3.144). The first two estimates in (3.207) follow from (3.206) and

K = 210 in Proposition 3.26. The last estimate in (3.207) follows by taking K = 210

in Proposition 3.26 and (2.13). ⇤

Proof of Lemma 3.45. Notice that for G 2 ⌦+
1 (z, `), the assumptions in Proposition

3.26 hold for K = 210. By the resolvent identity (B.1),

|Ĝ(Tb
k

)
c
k

c
k

�G(Tb
k

)
c
k

c
k

| 6
X

x,y

|Ĝ(Tb
k

)
c
k

x ||�xy||Ĝ(Tb
k

)
yc

k

|,

where � =
P

m2[[1,⌫]]\{k}(ecmb
m

+ eb
m

c
m

)/
p
d� 1. By our choice of the index set J ,

{bk, ck} and {bm, cm : m 2 [[1, ⌫]] \ {k}} are in di↵erent S-cells. Thus |Ĝ(T)
c
k

x|, |Ĝ(T)
b
k

x| 6
2M/

p
N⌘ by (3.101). Therefore, using (B.5), and notice |Ĝ(T)

b
k

b
k

| > |Ĝ(T)
c
k

b
k

|, we get

|Ĝ(Tb
k

)
c
k

x | 6 |Ĝ(T)
c
k

x|+
�

�

�

�

�

Ĝ(T)
c
k

b
k

Ĝ(T)
b
k

x

Ĝ(T)
b
k

b
k

�

�

�

�

�

6 |Ĝ(T)
c
k

x|+ |Ĝ(T)
b
k

x| 6
4Mp
N⌘

.
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The same estimate holds for |Ĝ(T)
yc

k

|. Thus the second term is bounded by

X

x,y

|Ĝ(Tb
k

)
c
k

x ||�xy||Ĝ(Tb
k

)
yc

k

| 6 4(d� 1)`+1/2

✓

2Mp
N⌘

◆2

6 16q2r,

provided that
p
N⌘ > Mq�3r/2. Similarly, now setting� =

P⌫
m=1(eamb

m

+eb
m

a
m

)/
p
d� 1,

by the resolvent identity (B.1) and (B.5), we have

|G̃(T)
c
k

c
k

� Ĝ(Tb
k

)
c
k

c
k

| 6 |G̃(T)
c
k

c
k

� Ĝ(T)
c
k

c
k

|+ |Ĝ(Tb
k

)
c
k

c
k

� Ĝ(T)
c
k

c
k

| 6
X

x,y

|Ĝ(T)
c
k

x||�xy||G̃(T)
yc

k

|+
�

�

�

�

�

Ĝ(T)
c
k

b
k

Ĝ(T)
b
k

c
k

Ĝ(T)
b
k

b
k

�

�

�

�

�

.

(3.208)

For the last term in (3.208), by (3.207), |Ĝ(T)
c
k

b
k

| 6 2K|msc|qr and |Ĝ(T)
b
k

b
k

| > |msc|/2,
and therefore

�

�

�

�

�

Ĝ(T)
c
k

b
k

Ĝ(T)
b
k

c
k

Ĝ(T)
b
k

b
k

�

�

�

�

�

6 (2K|msc|qr)2
|msc|/2 = 8K2|msc|q2r.

For the sum on the right-hand side of (3.208), we can split it into two,

X

x,y

|Ĝ(T)
c
k

x||�xy||G̃(T)
yc

k

| = |Ĝ(T)
c
k

b
k

||�b
k

a
k

||G̃(T)
a
k

c
k

|+
X

(x,y) 6=(b
k

,a
k

)

|Ĝ(T)
c
k

x||�xy||G̃(T)
yc

k

|.

Again, we have |Ĝ(T)
c
k

x| 6 2M/
p
N⌘, for x 2 {bm : m 2 [[1, ⌫]]\{k}}[{am : m 2 [[1, ⌫]]}.

Combining with (3.207), it follows that

(3.205) 6 (2K|msc|qr)(27K3|msc|qr)p
d� 1

+
2Mp
N⌘

4(d� 1)`+1

p
d� 1

(27K3|msc|qr) + 8K2|msc|q2r

6 210K4|msc|q2r,

provided that
p
N⌘q2r > M . ⇤

3.9.4. Proof of Proposition 3.40. Finally, using the previous lemmas, we can proof

Proposition 3.40.
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Proof of Proposition 3.40. For k 2 J , the r-neighborhood of ck is a d-regular tree

with root degree d � 1 in any of the graphs G(Tb
k

), Ĝ(Tb
k

) and G̃(T); therefore, by

(2.11),

Pc
k

c
k

�Er
�

ck, ck,G(Tb
k

)
��

= Pc
k

c
k

⇣

Er
⇣

ck, ck, Ĝ(Tb
k

)
⌘⌘

= Pc
k

c
k

⇣

Er
⇣

ck, ck, G̃(T)
⌘⌘

= msc.

On the other hand, for the indices k 2 [[1, µ]] \ J , by (3.11), Proposition 3.26, and

Lemma 3.41, using that for G 2 ⌦+
1 (z, `), the assumption of Proposition 3.26 holds

with K = 210, we have

�

�G(Tb
k

)
c
k

c
k

� Pc
k

c
k

�Er
�

ck, ck,G(Tb
k

)
��

�

� 6 2K|msc|qr,
�

�

�

Ĝ(Tb
k

)
c
k

c
k

� Pc
k

c
k

⇣

Er
⇣

ck, ck, Ĝ(Tb
k

)
⌘⌘

�

�

�

6 4K|msc|qr,
�

�

�

G̃(T)
ã
k

ã
k

� Pã
k

ã
k

⇣

Er
⇣

ãk, ãk, G̃(T)
⌘⌘

�

�

�

6 27K3|msc|qr.

(3.209)

The above estimates (3.209) and (3.204) give

�

�

�

�

�

1

µ

µ
X

k=1

�

G(Tb
k

)
c
k

c
k

� Pc
k

c
k

�Er
�

ck, ck,G(Tb
k

)
����

⇣

Ĝ(Tb
k

)
c
k

c
k

� Pc
k

c
k

⇣

Er
⇣

ck, ck, Ĝ(Tb
k

)
⌘⌘⌘

�

�

�

�

�

6 6K(µ� |J |)|msc|qr
µ

+
1

µ

X

k2J

|G(Tb
k

)
c
k

c
k

� Ĝ(Tb
k

)
c
k

c
k

|

6 6K(!0 + 9!)|msc|qr
µ

+ (8K2|msc|q2r + 16q2r) 6 (logN)1/2+�|msc|qr
4
p
µ

.

(3.210)
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Moreover, by the above estimates (3.209), (3.205) and using ãk = ck for k 2 J , we

have

�

�

�

�

�

1

µ

µ
X

k=1

⇣

G̃(T)
ã
k

ã
k

� Pã
k

ã
k

⇣

Er
⇣

ãk, ãk, G̃(T)
⌘⌘⌘

�
⇣

Ĝ(Tb
k

)
c
k

c
k

� Pc
k

c
k

⇣

Er
⇣

ck, ck, Ĝ(Tb
k

)
⌘⌘⌘

�

�

�

�

�

6 (4K + 27K3)(µ� |J |)|msc|qr
µ

+
1

µ

X

k2J

|G̃(T)
c
k

c
k

� Ĝ(Tb
k

)
c
k

c
k

|

6 (4K + 27K3)(!0 + 9!)|msc|qr
µ

+ 210K4|msc|q2r 6 (logN)1/2+�|msc|qr
4
p
µ

.

(3.211)

In the above estimates we used ` > 4 logd�1 logN by (3.5) so that
p
µ � logN = !0.

The left-hand side of (3.189) is bounded by

|(3.192)|+ |(3.196)|+ |(3.211)|+ |(3.192)| 6 2(logN)1/2+�|msc|qrp
µ

,

provided that
p
N⌘q3r+2 > M . ⇤

3.10. Improved approximation in the switched graph. The results of this sec-

tion are the following proposition, stating that the Green’s function obeys better

estimates than the original one near vertex 1. As in the previous sections, we write

G̃ = TS(G) and assume that S 2 F 0(G) (as in Lemma 3.42) is such that G̃ = TS(G) 2 ⌦̄

(as in Section 3.1.2). Throughout the proof, C represents constants depending only

on the constant K from (3.99) and the excess !, which may be di↵erent from line to

line.

Proposition 3.47. Under the assumptions of Propositions 3.26, for S 2 F 0(G) such
that G̃ = TSG 2 ⌦̄, the Green’s function of the switched graph satisfies the following

improved estimates near vertex 1.
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(i) For the vertex x = 1,

G̃11 = P11(Er(1, 1, G̃)) + m2
dm

2`
scµ

(d� 1)(`+1)
(Q(G̃)�msc) + O6

�

22!+10K3|msc|qr+1
�

.

(3.212)

(ii) For all vertices x 2 [[2, N ]],

�

�

�

G̃1x � P1x(Er(1, x, G̃))
�

�

�

6 (! + 1)22!+14K3|msc|qr+1.(3.213)

Moreover, if the vertex 1 has radius-R tree neighborhood in the graph G̃, then the

following stronger estimates hold.

(i’) For the vertex x = 1,

G̃11 = md +m2
dm

2`
sc

d

d� 1
(Q(G̃)�msc) + O6

 

4(logN)1/2+�|msc|qr
p

d(d� 1)`

!

.(3.214)

(ii’) For the the average of G̃1x over the vertices x adjacent to 1,

1

d

X

1⇠x

G̃1x +
mdmscp
d� 1

=
�m2

dm
2`�1
sc (1 +m2

sc)p
d� 1

(Q(G̃)�msc) + O6

 

16(logN)1/2+�|msc|qr+1

p

d(d� 1)`

!

.

(3.215)

For all estimates we assume that
p
d� 1 > max{(!+1)222!+10, 28(!+1)K}, !02q` ⌧

1 and
p
N⌘q3r+2 > M , and the global quantity Q(G̃) is as defined in (3.188).

We use the same set-up as in Section 3.8, and notice that (3.213) is (3.157).

3.10.1. Proof of (3.212) and (3.214). By (3.163), we have

G̃11 � P̃11 =
1

d� 1

X

k2[[1,µ]]

P̃ 2
1l

k

(G̃(T)
ã
k

ã
k

� P̃ (T)
ã
k

ã
k

) +
1

d� 1

X

k 6=m2[[1,µ]]

G̃1l
k

P̃1l
m

(G̃(T)
ã
k

ã
m

� P̃ (T)
ã
k

ã
m

)

+
1

d� 1

X

k2[[1,µ]]

(G̃1l
k

� P̃1l
k

)P̃1l
k

(G̃(T)
ã
k

ã
k

� P̃ (T)
ã
k

ã
k

).

(3.216)
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For the last term on the right-hand side of (3.216), we have

�

�

�

�

�

�

1

d� 1

X

k2[[1,µ]]

(G̃1l
k

� P̃1l
k

)P̃1l
k

(G̃(T)
ã
k

ã
k

� P̃ (T)
ã
k

ã
k

)

�

�

�

�

�

�

6
X

k2[[1,µ]]

Cqr+2q`+1(|msc|qr) 6 C|msc|qr+`+2,

where we used (3.177) for the first factor, (3.180) for the second factor, and (3.102)

for the last factor. For the second term on the right-hand side of (3.216), we have

�

�

�

�

�

�

1

d� 1

X

k 6=m2[[1,µ]]

G̃1l
k

P̃1l
m

(G̃(T)
ã
k

ã
m

� P̃ (T)
ã
k

ã
m

)

�

�

�

�

�

�

6 C(q`+1)(q`+1)
X

k 6=m2[[1,µ]]

|(G̃(T)
ã
k

ã
m

� P̃ (T)
ã
k

ã
m

)|

6 Cq2`+2(!02|msc|qr) 6 C|msc|qr+`+2,

provided that !02q` ⌧ 1, where we used (3.184) for the first factor, (3.180) for the

second factor, and (3.170) for the last factor. Therefore (3.216) is bounded by

(3.217) G̃11 � P̃11 =
1

d� 1

X

k2[[1,µ]]

P̃ 2
1l

k

(G̃(T)
ã
k

ã
k

� P̃ (T)
ã
k

ã
k

) +O
�|msc|qr+`+2

�

,

where the implicit constant depends only on the excess ! and K from (3.99).

Proof of (3.214). If the radius-R neighborhood of the vertex 1 is a tree, then by

Proposition 2.6,

P̃ 2
1l

k

=
m2

dm
2`
sc

(d� 1)`
, P̃11 = md,

and

(3.218) G̃11 �md =
m2

dm
2`
sc

(d� 1)`+1

X

k2[[1,µ]]

(G̃(T)
ã
k

ã
k

� P̃ (T)
ã
k

ã
k

) +O
�|msc|qr+`+2

�

.

Notice that µ = d(d�1)` under the assumption that the R-neighborhood is a tree.

Moreover, for all k 2 [[1, µ]],

P̃ (T)
ã
k

ã
k

= P̃ã
k

ã
k

⇣

Er
⇣

ãk, ãk, G̃(T)
⌘⌘

= msc,
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and by Proposition 3.40, we can simplify (3.218) to get

G̃11 = md +
d

d� 1
m2

dm
2`
sc(Q(G̃)�msc) + O6

 

4(logN)1/2+�|msc|qr
p

d(d� 1)`

!

.(3.219)

This finishes the proof of (3.214). ⇤

Proof of (3.212). Since by assumption G̃ 2 ⌦̄, the radius-R neighborhood of the

vertex 1 has excess at most !. Therefore, there are at most 2!(d � 1)` indices

k 2 [[1, µ]] such that the non-backtracking path from 1 to lk of length ` is not unique.

Let

J 0 = {k 2 [[1, µ]] : non-backtracking path from 1 to lk of length ` is unique}.

For k 2 J 0, by (2.23) in the proof of Proposition 2.7, we have

�

�

�

�

P̃1l
k

� md(�msc)`

(d� 1)`/2

�

�

�

�

6 |md|
X

k>2

2!kq`+k�1 6 22!|md|3
2
q`+1,

provided that
p
d� 1 > 2!+2. Therefore, for all k 2 J 0, the following estimate holds

P̃ 2
1l

k

d� 1
=

m2
dm

2`
sc

(d� 1)`+1
+O6

�

22!+2q2`+3
�

,

For k 2 [[1, µ]] \ J 0 by (3.180), we have |P̃1l
k

| 6 2!+2|msc|q`. Notice that |J 0| 6 µ 6

d(d� 1)` and |[[1, µ]] \ J 0| 6 2!(d� 1)`, it follows that

1

d� 1

X

k2[[1,µ]]

�

�

�

�

P̃ 2
1l

k

� m2
dm

2`
sc

(d� 1)`

�

�

�

�

=
1

d� 1

X

k2[[1,µ]]\J 0

(· · · ) + 1

d� 1

X

k2J 0

(· · · ).

62!(d� 1)`22!+5q2`+2 + d(d� 1)`22!+2q2`+3 6 22!+2(dq + 16!)q2

(3.220)
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Combining (3.220), (3.102) and (3.160), (3.217) leads to

G̃11 � P̃11 =
m2

dm
2`
sc

(d� 1)(`+1)

X

k2[[1,µ]]

(G̃(T)
ã
k

ã
k

� P̃ (T)
ã
k

ã
k

)

+ O6

✓

22!+2(dq + 16!)q2 max
k2[[1,µ]]

|G̃(T)
ã
k

ã
k

� P̃ (T)
ã
k

ã
k

|
◆

=
m2

dm
2`
sc

(d� 1)(`+1)

X

k2[[1,µ]]

⇣

G̃(T)
ã
k

ã
k

� P̃ã
k

ã
k

(Er(ãk, ãk, G̃(T)))
⌘

+ E ,

(3.221)

where the error term is bounded

|E| 6 22!+2(dq + 16!)q2(27K3|msc|qr + 22!+3|msc|qr+1) + |md|2µ22!+3|msc|qr+1/(d� 1)`+1

6 3⇥ 22!+8K3|msc|qr+1,

provided that
p
d� 1 > 26!. Therefore, by Proposition 3.40, we can simplify (3.221)

to get

G̃11 = P̃11(Er(1, 1, G̃)) + m2
dm

2`
scµ

(d� 1)(`+1)
(Q(G̃)�msc) + O6

�

22!+10K3|msc|qr+1
�

.

(3.222)

This finishes the proof of (3.212). ⇤

3.10.2. Proof of (3.215).

Proof of (3.215). For any vertex x adjacent to 1, by (3.163) we have,

G̃1x � P̃1x =
1

d� 1

X

k2[[1,µ]]

P̃1l
k

P̃xl
k

(G̃(T)
ã
k

ã
k

� P̃ (T)
ã
k

ã
k
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1
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X

k 6=m2[[1,µ]]

G̃1l
k

P̃xl
m

(G̃(T)
ã
k

ã
m

� P̃ (T)
ã
k

ã
m

)

+
1

d� 1

X

k2[[1,µ]]

(G̃1l
k

� P̃1l
k

)P̃xl
k

(G̃(T)
ã
k

ã
k

� P̃ (T)
ã
k

ã
k

).

(3.223)
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For the last term on the right-hand side of (3.223),

�

�

�

�

�

�

1

d� 1

X

k2[[1,µ]]

(G̃1l
k

� P̃1l
k

)P̃xl
k

(G̃(T)
ã
k

ã
k

� P̃ (T)
ã
k

ã
k

)

�

�

�

�

�

�

6 Cqr+2qr+1
X

k2[[1,µ]]

|P̃xl
k

| 6 C|msc|qr+`+3.

where in the first inequality, we used (3.177) for the first factor, and (3.102) for the

last factor; in the second inequality, we used (3.164) for the case x 2 T1. For the

second term on the right-hand side of (3.223), we have

�

�

�

�

�

�

1

d� 1

X

k 6=m2[[1,µ]]

G̃1l
k

P̃xl
m

(G̃(T)
ã
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ã
m

� P̃ (T)
ã
k

ã
m

)

�

�

�

�

�

�

6 Cq2`+1
X

k 6=m2[[1,µ]]

|G̃(T)
ã
k

ã
m

� P̃ (T)
ã
k

ã
m

|

6 C!02|msc|qr+2`+1 6 C|msc|qr+`+1,

provided that !02q` ⌧ 1, where we used (3.170). Therefore, they together lead to

G̃1x � P̃1x =
1

d� 1

X

k2[[1,µ]]

P̃1l
k

P̃xl
k

(G̃(T)
ã
k

ã
k

� P̃ (T)
ã
k

ã
k

) +O
�|msc|qr+`+1

�

,(3.224)

where the implicit constant depends only on the excess ! and K. Especially, if vertex

1 has radius-R neighborhood, then by Proposition 2.6

P̃1x = �mdmscp
d� 1

, P̃ (T)
ã
k

ã
k

= msc, P̃1l
k

=
md(�msc)`

(d� 1)`/2
, P̃xl

k

= md

✓ �mscp
d� 1

◆distG̃(x,lk)
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for any index k 2 [[1, µ]]. Thus averaging (3.224) over all the vertices x adjacent to 1

(in the following, we write x ⇠ 1 when the vertex x is adjacent to 1), we get

1

d

X

x⇠1

G̃1x +
mdmscp
d� 1

=
1

d(d� 1)

X

k2[[1,µ]]

(G̃(T)
ã
k

ã
k

� P̃ (T)
ã
k

ã
k

)
X

x⇠1

P̃1l
k

P̃xl
k

+O
�|msc|qr+`+1

�

=
md(�msc)`

d(d� 1)`/2+1

X

k2[[1,µ]]

(G̃(T)
ã
k

ã
k

� P̃ (T)
ã
k

ã
k

)
X

x⇠1

P̃xl
k

+O
�|msc|qr+`+1

�

=
�m2

dm
2`�1
sc (1 +m2

sc)

d(d� 1)`+1/2

X

k2[[1,µ]]

(G̃(T)
ã
k

ã
k

� P̃ (T)
ã
k

ã
k

) +O
�|msc|qr+`+1

�

=
�m2

dm
2`�1
sc (1 +m2

sc)p
d� 1

(Q(G̃)�msc) + O6

 

16(logN)1/2+�|msc|qr+1

p

d(d� 1)`

!

.

In the third line, we used the fact that for any index k 2 [[1, µ]], among the d children of

vertex 1, one of them is distance `�1 to the vertex lk, and the others are distance `+1

to the vertex lk. In the last line, we used Proposition (3.40), and |m2
dm

2`�1
sc (1+m2

sc)| 6
4. This finishes the proof of Proposition 3.47. ⇤

3.11. Proof of main results. In this section, we use the estimates established in

the previous sections to prove Theorem 3.1.

3.11.1. Summary of estimates. By combining the propositions of the previous sec-

tions, we obtain the following sequence of propositions, relating the sets

⌦�(z, `) ⇢ ⌦(z, `) ⇢ ⌦+
1 (z, `) ⇢ ⌦̄ ⇢ GN,d, ⌦0

1(z, `) ⇢ ⌦̄ ⇢ GN,d,

defined in Section 3.1.2. We also recall the parameters from Section 3.1.1, assume

that

` 2 [[`⇤, 2`⇤]], r = 2`+ 1,(3.225)
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and (3.60), namely that

!0 = blogNc, M = (d� 1)9`(logN)�.(3.226)

Since, for |z| > 2d � 1, the claim of Theorem 3.1 follows from Proposition 3.3, it

su�ces to prove the claim of Theorem 3.1 on the following slightly smaller domain

(3.227)

D⇤ :=

⇢

z 2 C+ : |z| 6 2d, Im[z] > (logN)48↵+1

N
, |z ± 2| > (logN)�↵/2+1

�

,

which is the intersection of D (as in (1.4)) with {z 2 C+ : |z| 6 2d}.

Proposition 3.48 (Initial estimates). Under the assumptions of Theorem 3.1, and

the choices of parameters given in (3.225) and (3.226), for N > N(!, d, �) large

enough, we have

P(⌦̄) = 1� o(N�!+�).(3.228)

Moreover, for any z 2 C+ such that |z| > 2d� 1, we have ⌦̄ ⇢ ⌦�(z, `).

Proof. The estimate (3.228) follows from Proposition 2.1, and the inclusion ⌦̄ ⇢
⌦�(z, `) from Proposition 3.3. ⇤

Given a graph G and a vertex i, we resample the edge boundary of B`(i,G) us-

ing switchings; without loss of generality we assume i = 1. Denote the resampled

graph by TS(G) (which depends on the choice of i); S is the resampling data (whose

distribution depends on G).

Proposition 3.49 (Stability under resampling). Under the assumptions of Theorem

3.1, and the choices of parameters given in (3.225) and (3.226), for z 2 D⇤, N >

N(↵,!, d, �) large enough, and any G 2 ⌦(z, `), the following holds. (i) G 2 ⌦+
1 (z, `).

(ii) There exists a set F (G) ⇢ S(G) with PG(F (G)) = 1� o(N�!+�) such that for any

S 2 F (G) with TS(G) 2 ⌦̄, we have TS(G) 2 ⌦+
1 (z, `).
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Proof. The first statement G 2 ⌦+
1 (z, `) follows from Proposition 3.21, and the second

statement follows from Proposition 3.26 with K = 2. ⇤

Proposition 3.50 (Improvement under resampling). Under the assumptions of The-

orem 3.1, and the choices of parameters given in (3.225) and (3.226), for z 2 D⇤,

N > N(↵,!, d, �) large enough, and any G 2 ⌦+
1 (z, `), there exists a set F 0(G) ⇢ S(G)

with PG(F 0(G)) = 1�o(N�!+�) such that for any S 2 F 0(G) with TS(G) 2 ⌦̄, we have

TS(G) 2 ⌦0
1(z, `).

Proof. The definition of the set F 0(G) and its properties are given in Proposition 3.40.

The final statement TS(G) 2 ⌦0
1(z, `) follows from Propositions 3.26 and 3.47 by

taking K = 210. ⇤

The improvement under resampling above applies to the switched graphs TS(G).
However, by general properties of T , it implies an improvement on the original space

of graphs.

Proposition 3.51 (Improvement on original space). Under the assumptions of The-

orem 3.1, and the choices of parameters given in (3.225) and (3.226), for z 2 D⇤, we

have

(3.229) P(⌦(z, `) \ (⌦(z, `) \ ⌦0
1(z, `))) = o(N�!+�).

Proof. By Propositions 3.48–3.50, the conditions of Proposition 3.9 are satisfied with

q0, q1, q2 = o(N�!+�), and ⌦̄ as in Section 3.1, ⌦ = ⌦(z, `), ⌦+ = ⌦+
1 (z, `), and

⌦0 = ⌦0
1(z, `). Therefore, Proposition 3.9 implies

P(⌦(z, `) \ (⌦(z, `) \ ⌦0
1(z, `))) = o(N�!+�),

which was the claim. ⇤
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Clearly, by the same argument or by symmetry, (3.229) also holds with vertex 1

replaced by any other vertex i 2 [[N ]]. In particular, for any graph in the intersection

of the ⌦0
i(z, `) over i 2 [[N ]], we have the following improved estimates for the entries

of its Green’s function.

Proposition 3.52 (Self-consistent equation). Under the assumptions of Theorem

3.1, and the choices of parameters given in (3.225) and (3.226), for any z 2 D⇤ (as

in (3.227)) and N > N(↵,!, d, �) large enough, we have

Q(G)�msc =
d� 2

d� 1
mdm

2`+1
sc (Q(G)�msc) +O

✓

(logN)1/2+�|msc|qr
(d� 1)(`+1)/2

◆

.(3.230)

Proof. As noted above, the same statement as in Proposition 3.51 holds with vertex 1

replaced by any other vertex i 2 [[N ]]. On the union of the ⌦0
i(z, `), the improvement

then holds for all i simultaneously, and by a union bound

P(⌦(z, `) \ \i2[[N ]]⌦
0
i(z, `)) 6

N
X

i=1

P(⌦(z, `) \ ⌦0
i(z, `)) = o(N�!+1+�).

For any graph G 2 \i2[[N ]]⌦0
i(z, `), by the definition of ⌦0

i(z, `) (as in Section 3.1),

we have

Gii(G, z) = Pii(Er(i, i,G), z) + m2
dm

2`
scµ

(d� 1)(`+1)
(Q(G)�msc) + O6

�

22!+40|msc|qr+1
�

,

(3.231)

and, for any j 6= i, we have the bound

|Gij(G, z)� Pij(Er(i, j,G), z)| 6 (! + 1)22!+44|msc|qr+1.(3.232)
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In the following, we derive an approximate self-consistent equation for Q(G) �msc.

Using the Green’s function identity (B.5), notice that

Q(G)�msc =
1

Nd

X

(i,j)2 ~E

(G(i)
jj �msc) =

1

Nd

X

(i,j)2 ~E

✓

Gjj � GijGij

Gii
�msc

◆

=
1

N

X

i

 

Gii � 1

d

X

j:j⇠i

GijGij

Gii
�msc

!

,(3.233)

where ~E is the set of oriented edges of G, and where here j ⇠ i means that the vertices

i and j are adjacent to each other. Since G 2 ⌦̄, at least N � N � of the vertices of

G have radius-R tree neighborhoods. The contribution to Q(G) � msc from those

vertices which do not have radius-R tree neighborhoods is O(N ��1). For any vertex

i that has radius-R tree neighborhood, by the definition of ⌦0
i(z, `),

Gii �md = m2
dm

2`
sc

d

d� 1
(Q(G)�msc) +O

✓

(logN)1/2+�|msc|qr
(d� 1)(`+1)/2

◆

,

(3.234)

1

d

X

j⇠i

Gij +
mdmscp
d� 1

=
�m2

dm
2`�1
sc (1 +m2

sc)p
d� 1

(Q(G)�msc) +O

✓

(logN)1/2+�|msc|qr+1

(d� 1)(`+1)/2

◆

.

(3.235)

Also, by the stability estimate Claim 3.39, for any vertex i with radius-R tree

neighborhood, and vertex j adjacent to i, we have |Gii � md| = O(|msc|qr) and

|Gij �mdmsc/
p
d� 1| = O(|msc|qr), where the implicit constant depends only on !.

It follows that

GijGij

Gii
� mdm2

sc

d� 1
=

�2m2
d

m
scp

d�1
(Gij +

m
d

m
scp

d�1
)� m2

d

m2
sc

d�1
(Gii �md) +md(Gij +

m
d

m
scp

d�1
)2

mdGii

= � 2mscp
d� 1

(Gij +
mdmsc

d� 1
)� m2

sc

d� 1
(Gii �md) + O(q2r).

(3.236)
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Combining (3.234)–(3.236), we get

Gii � 1

d

X

j:j⇠i

GijGij

Gii
�msc =

d� 2

d� 1
m2`+1

sc md(Q(G)�msc) +O

✓

(logN)1/2+�|msc|qr
(d� 1)(`+1)/2

◆

,

for all vertices i which have radius-R tree neighborhoods. Then averaging over i 2
[[N ]], we obtain (3.230), as claimed. ⇤

The equation (3.230) implies

Q(G)�msc =

✓

1� d� 2

d� 1
mdm

2`+1
sc

◆�1

O

✓

(logN)1/2+�|msc|qr
(d� 1)(`+1)/2

◆

,(3.237)

provided that the term in the first bracket does not vanish. To use this equation to

show that the left-hand side is small, we require a lower bound on the term in the

first bracket on the right-hand side. Since 1 � (d � 2)mdm2`+1
sc /(d � 1) may be zero

on the spectral domain D⇤, such a bound only holds on an `-dependent subset of the

spectral domain, which we now define. (In Section 3.11.2, we will use the flexibility

in the choice of ` 2 [[`⇤, 2`⇤]] to recover the entire spectral domain.)

First, we define the Joukowsky transform � to be the holomorphic bijection from

the upper half unit disk D+ to the upper half plane C+ given by

� : w 2 D+ 7! � �w + w�1
� 2 C+.

It is the functional inverse of z 7! msc(z), i.e. msc(�(w)) = w. For any ` 2 [[`⇤, 2`⇤]]

as in (3.5), we define the small error parameter

"` :=
(logN)1/2+2�

(d� 1)(`+1)/2
⌧ (logN)1�↵/2,(3.238)

as well as the sets ⇤̃` ⇢ D+ and ⇤` ⇢ C+ by

⇤̃` :=

⇢

msc(z) : z 2 C+,

�

�

�

�

1� d� 2

d� 1
m2`+1

sc (z)md(z)

�

�

�

�

> "`

�

, ⇤` := �(⇤̃`).

(3.239)
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Proposition 3.53 (Self-consistent equation). Under the assumptions of Theorem

3.1, and the choices of parameters given in (3.225) and (3.226), for any z 2 D⇤ (as

in (3.227)) and N > N(↵,!, d, �) large enough, we have

P(⌦(z, `) \ \i2[[N ]]⌦
0
i(z, `)) = o(N�!+1+�).

Moreover, for z 2 D⇤ \ ⇤` and any G 2 T

i2[[N ]] ⌦
0
i(z, `), the normalized Green’s

function of G satisfies, for any i, j 2 [[N ]],

|Gij(G, z)� Pij(Er(i, j,G), z)| 6 (! + 1)22!+44|msc|qr+1,

where r = 2`+ 1.

Proof. Let z 2 D⇤ \ ⇤`. Then by the definition of the set ⇤̃` in (3.239), we have

�

�

�

�

1� d� 2

d� 1
m2`+1

sc md

�

�

�

�

> (logN)1/2+2�

(d� 1)(`+1)/2
,

and (3.237) implies

|Q(G)�msc| = O
�|msc|qr(logN)��

�

,

where the implicit constant depends only on !. Plugging the above expression into

(3.231), we get

Gii(G, z) = Pii(Er(i, i,G), z) + O6
�

(1 + 22!+40)|msc|qr+1
�

,

for N large enough. This finishes the proof of Proposition 3.53 by combining with

(3.232). ⇤

3.11.2. Decomposition of the spectral domain. The following lemma gives a precise

description of the sets ⇤̃`, stating that, except for two small regions near ±1, the half

disk D+ is contained in the union of the sets ⇤̃`, i.e., in [`2[[`⇤,2`⇤]]⇤̃`. To be precise,
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we define the spectral domains

D` = {z 2 C+ : |z| 6 2d, Im[z] > (d� 1)24` logN/N, |z ± 2| > 4"`},(3.240)

D̃` = D+ \ �w = ei✓r 2 D+ : |✓| 6 "`, 1� "` 6 r < 1
 

.(3.241)

Lemma 3.54. For any ` 2 [[`⇤, 2`⇤]], define ⇤̃` as in (3.239). Then D+ \ ⇤̃` is

contained in

�

w = ei✓r : 0 < ✓ 6 "`, 1� "` 6 r < 1
 [�w = e⇡iei✓r : �"` 6 ✓ < 0, 1� "` 6 r < 1

 [
[̀

k=1

⇢

w = e
k⇡i
`+1 ei✓r : |✓| 6 2⇡

d(`+ 1)
, 0 < r < 1

�

.

As a consequence, for any ✓0 2 (0, ⇡), there exists some ` 2 [[`⇤, 2`⇤]] such that

D̃` \ {w = ei✓0r : 0 < r < 1} ⇢ ⇤̃`.(3.242)

Proof. By the definition of the set ⇤̃`, its complement is

�

�

�

�

1� d� 2

d� 1
m2`+1

sc

msc

1�m2
sc/(d� 1)

�

�

�

�

< "`.

This implies that
�

�

�

�

1� m2
sc

d� 1
� d� 2

d� 1
m2`+2

sc

�

�

�

�

< 2"`,

and therefore

(3.243)
�

�1�m2`+2
sc

�

� <

�

�

�

�

m2
sc

d� 1
� m2`+2

sc

d� 1

�

�

�

�

+ 2"` <
2

d� 1
+ 2"`.

From direct computation, for any 0 6 r 6 1 and ✓ 2 [�⇡, ⇡], we have the following

simple estimate:

1� r

2
+

p
r|✓|
⇡

6 |1� ei✓r| 6 (1� r) + |✓|.(3.244)
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Therefore (3.243) implies

msc 2
`+1
[

k=0

⇢

w = e
k⇡i
`+1 ei✓r 2 D+ : |✓| 6 2⇡

d(`+ 1)
, 0 < 1� r2(`+1) 6 5

d

�

.

We have better estimates if msc = ei✓r or msc = ei⇡ei✓r, for some |✓| 6 2⇡
d(`+1)

and

0 < 1� r2(`+1) 6 5
d . In this case, on the complement of ⇤̃`,

�

�

�

�

d� 2

d� 1
(1�m2`+2

sc )

�

�

�

�

6
�

�

�

�

1�m2
sc

d� 1

�

�

�

�

+ 2"`.

Combining the above expression with (3.244), we get

d� 2

d� 1

✓

1� r2(`+1)

2
+

2(`+ 1)r(`+1)|✓|
⇡

◆

6 1

d� 1

�

1� r2 + 2|✓|�+ 2"`.

It follows that |✓| 6 "` and 1 � "` 6 r < 1. This finishes the proof of the first

statement.

For the second statement, if ✓0 2 (0, (1� 2
d)

⇡
`⇤+1

)[((1+ 2
d)

`⇤⇡
`⇤+1

, ⇡), then {z = ei✓0r :

0 6 r 6 1}\ D̃`⇤ ⇢ ⇤̃`⇤ . In the following we consider the case, ✓0 2 [(1� 2
d)

⇡
`⇤+1

, (1 +

2
d)

`⇤⇡
`⇤+1

]. We use the convention that (a mod ⇡) 2 [�⇡/2, ⇡/2), for any a 2 R. If we

can find some ` 2 [[`⇤, 2`⇤]], such that ((`+ 1)✓0 mod ⇡) 2 [�⇡/2,�⇡/8][ [⇡/8, ⇡/2),

then there exists some integer k such that

� 3⇡

8(`+ 1)
6
�

�

�

�

✓0 � k⇡

`+ 1
� ⇡

2(`+ 1)

�

�

�

�

6 3⇡

8(`+ 1)
,

and thus {z = ei✓0r : 0 < r < 1} 2 ⇤̃`. In the following we prove such ` exists. By

symmetry we assume ✓0 2 [(1� 2
d)

⇡
`⇤+1

, ⇡
2
]. We consider the following numbers,

(`⇤ + 1)✓0 mod ⇡, (`⇤ + 2)✓0 mod ⇡, . . . , (2`⇤ + 1)✓0 mod ⇡.(3.245)

If ((`⇤+1)✓0 mod ⇡) 2 [�⇡/2,�⇡/8][[⇡/8, ⇡/2), then we can take ` = `⇤. Otherwise,

we assume ((`⇤ + 1)✓0 mod ⇡) 2 (�⇡/8, ⇡/8). Since (2`⇤ + 1)✓0 � (`⇤ + 1)✓0 =

`⇤✓0 > (1 � 2
d)

`⇤⇡
`⇤+1

> ⇡
2
, the above sequence (3.245) can not all stay in the interval
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(�⇡/8, ⇡/8). Say (` + 1)✓0 mod ⇡ is the first number in the above sequence which

is not in (�⇡/8, ⇡/8). We can take this `, then (`✓0 mod ⇡) 2 (�⇡/8, ⇡/8), and

((`+ 1)✓0 mod ⇡) 2 [�⇡/2,�3⇡/8) [ [⇡/8, ⇡/2). This finishes the proof. ⇤

Lemma 3.55. (i) For the choice of parameters in (3.225)–(3.226), for any z 2
D`, all of the conditions in Propositions 3.3, 3.21, 3.26 and 3.47 are satisfied

for K 2 {2, 210}; i.e.,

p
d� 1 > max{(! + 1)222!+10, 28(! + 1)K}, !02q` ⌧ 1,

p

NIm[z]q3r+2 � M.

(ii) For any ` 2 [[`⇤, 2`⇤]], we have

D⇤ ⇢ D` ⇢ �(D̃`).(3.246)

Proof. It is straightforward to check that (i) holds. In the following, we therefore

only prove (ii). For this, notice that (d � 1)24` 6 (d � 1)48`⇤ 6 (logN)48↵, and that

in combination with (3.238), it follows that D⇤ ⇢ D`. For the second inclusion in

(3.246), observe that, for any w = ei✓r such that 0 < ✓ 6 "` and 1 � "` 6 r 6 1, we

have

|�(w) + 2| =
�

�

�

�

ei✓r +
1

ei✓r
� 2

�

�

�

�

< 4"`,

and that we have similar estimates for w = ei⇡ei✓r with �"` 6 ✓ 6 0 and 1 � "` 6

r 6 1. Therefore,

{z 2 C+ : |z ± 2| > 4"`} ⇢ �(D̃`),

and D` ⇢ �(D̃`) follows. This finishes the proof of (3.246). ⇤

3.11.3. Proof of Theorem 3.1. We define a lattice on D+ by

L̃ :=

⇢

ei✓r 2 D+ : ✓ 2 ⇡Z
N3

, r 2 Z
N3

�

.
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The image of L̃ under the Joukowsky transform defines a discrete approximation of

D⇤ by

L := �(L̃) \D⇤.(3.247)

Notice that D⇤ can indeed be well approximated by L, in the sense that for any

z 2 D⇤ there is some z0 2 L such that |z � z0| = (logN)O(1)/N3. Therefore, by

the following claim, we only need to prove Theorem 3.1 for z 2 L. The claim is a

consequence of the Lipschitz property of Green’s function.

Claim 3.56. For any ` 2 [[`⇤, 2`⇤]], and z, z0 2 D⇤ with |z � z0| = (logN)O(1)/N3, we

have

⌦�(z, `) ⇢ ⌦(z0, `).

Proof. For any graph G 2 ⌦�(z, `), the Green’s function of its normalized adjacency

matrix satisfies

|Gij(z)�Gij(z
0)| 6 |z � z0|

N
X

m=1

|Gim(z)Gmj(z
0)| 6 (logN)O(1)/N,

where we used |z� z0| = (logN)O(1)/N3, |Gim(z)| = O(1) from the definition (3.7) of

⌦�(z, `) and (2.15), as well as the trivial bound |Gmj(z0)| 6 1/⌘ 6 N . Moreover, the

same estimate holds for |Pij(Er(i, j,G), z)� Pij(Er(i, j,G), z0)|. As a result,

|Gij(z
0)� Pij(Er(i, j,G), z0)| = |Gij(z)� Pij(Er(i, j,G), z)|+ (logN)O(1)/N 6 |msc|qr,

and the claim follows. ⇤

Claim 3.57. For any ` 2 [[`⇤, 2`⇤]], we have

⌦�(z, `) ⇢ ⌦�(z, `⇤),

provided that
p
d� 1 > 22!+3.



150

Proof. Let G 2 ⌦�(z, `). Then, by (2.14) in Proposition 2.7,

|Gij(z)� Pij(Er⇤(i, j,G), z)|

6 |Gij(z)� Pij(Er(i, j,G), z)|+ |Pij(Er⇤(i, j,G), z)� Pij(Er(i, j,G), z)|

6 1

2
|msc|qr + �r 6=r⇤2

2!+3|msc|q2`⇤+2 6 1

2
|msc|qr⇤ ,

provided that
p
d� 1 > 22!+3. Therefore, G 2 ⌦�(z, `⇤), as claimed. ⇤

Proof of Theorem 3.1. For any ✓0 2 ⇡Z
N3 \ (0, ⇡), the Joukowsky transform � sends

the ray {w = ei✓0r : 0 < r < 1} to a branch of some hyperbola. With ✓0 fixed, we

consider the set

⇢

r 2 Z
N3

: �(ei✓0r) 2 D⇤
�

=

⇢

k0
N3

,
k0 + 1

N3
,
k0 + 2

N3
, . . . ,

k1
N3

�

,

for some 0 < k0 6 k1 < N3, and denote

zk = �

✓

ei✓0k

N3

◆

, 1 6 k 6 N3.

One can check that k0/N3 > 1/(3d), |zk0 | > 2d � 1, and |zk+1 � zk| 6 10d2/N3 for

k0 6 k 6 k1.

By Proposition 3.54, there exists some ` 2 [[`⇤, 2`⇤]] such that D̃` \ {ei✓0r : 0 < r <

1} ⇢ ⇤̃`. Therefore, combining with (3.246), we know that zk0 , zk0+1, . . . , zk1 2 ⇤`.

By Proposition 3.48, ⌦̄ ⇢ ⌦�(zk0 , `), and

P(⌦�(zk0 , `)) = 1� o(N�!+�).(3.248)

For any k0 6 k 6 k1 � 1, it follows from Claim 3.56 that

⌦�(zk, `) ⇢ ⌦(zk+1, `).(3.249)
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By Proposition 3.53, we have

P(⌦(zk+1, `) \ \i2[[N ]]⌦
0
i(zk+1, `)) = o(N�!+1+�),(3.250)

and

\i2[[N ]]⌦
0
i(zk+1, `) ⇢ ⌦�(zk+1, `),(3.251)

provided that
p
d� 1 > (! + 1)22!+45. It follows from combining (3.249)–(3.251)

that

P(⌦�(zk, `) \ ⌦�(zk+1, `)) = o(N�!+1+�).(3.252)

By definition, on the set \k1
k=k0

⌦�(zk, `), we have

|Gij(z)� Pij(Er(i, j,G), z)| 6 1

2
|msc|qr,

for any z = zk0 , zk0+1, . . . , zk1 . Moreover, combining (3.248) and (3.252), the above

holds with high probability,

P(\k1
k=k0

⌦�(zk, `)) = 1� (k1 � k0 + 1) o(N�!+1+�) = 1� o(N�!+4+�).(3.253)

Combining with Claim 3.57, the estimate (3.253) implies

P(\k1
k=k0

⌦�(zk, `⇤)) = 1� o(N�!+4+�).

The above argument is independent of ✓0 2 Z
N3 \ (0, ⇡). Thus, by a union bound,

with probability at least 1� o(N�!+7+�), uniformly in z 2 L, we have

|Gij(z)� Pij(Er⇤(i, j,G), z)| 6
1

2
|msc|qr⇤ .(3.254)

Since for any z 2 D⇤, there is some z0 2 L such that |z � z0| = (logN)O(1)/N3, the

Lipschitz property of Green’s function, Claim 3.56, implies that the above estimate
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(3.254) holds uniformly for z 2 D⇤, with possibly a slightly larger constant:

|Gij(z)� Pij(Er⇤(i, j,G), z)| 6 |msc|qr⇤ .(3.255)

This is (3.2), and thus the proof of Theorem 3.1 is complete. ⇤

4. Bulk Universality

4.1. Strategy of proof. Our goal is to prove that, on the regime 1 ⌧ d ⌧ N2/3, in

the bulk on the spectrum, the local eigenvalue statistics of A/
p
d� 1 are the same as

those of the GOE. As mentioned in Section 1.2, in order to show this, we interpolate

between the RRG and the GOE using Dyson Brownian motion, or more precisely its

Ornstein-Uhlenbeck version.

4.1.1. Constrained Dyson Brownian motion. The adjacency matrix A of a regular

graph is subject to the hard constraints that its rows and columns have fixed sum (i.e.

it has the eigenvector e = N�1/2(1, . . . , 1)⇤). Therefore, instead of the usual Dyson

Brownian motion, we use Dyson Brownian motion constrained to the subspace of

symmetric matrices whose row and column sums vanish.

We begin with the notion of an Ornstein-Uhlenbeck process on a general finite-

dimensional space.

Definition 4.1. Let H be a real finite-dimensional Hilbert space. Let (f↵)↵ be an

orthonormal basis of H.

(i) Let (w↵)↵ be i.i.d. standard normal random variables. Then we define the

standard Gaussian measure on H as W :=
P

↵ w↵f↵.

(ii) Let (h↵)↵ be i.i.d. Ornstein-Uhlenbeck processes satisfying

dh↵ = dB↵ � 1

2
h↵ dt ,
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where (B↵)↵ is a family of i.i.d. standard Brownian motions. Then we define

the standard Ornstein-Uhlenbeck process on H as H(t) :=
P

↵ h↵(t) f↵.

It is easy to verify that the laws of W and the process H do not depend on the

choice of the orthonormal basis (f↵), and that the standard Gaussian measure is

invariant under the standard Ornstein-Uhlenbeck process. We use these properties

tacitly from now on.

For example, let H := {H 2 RN⇥N : H = H⇤} be the Hilbert space of real

symmetric N ⇥N matrices with inner product

(4.1) hX , Y i :=
N

2
Tr(XY ) .

Then the usual N -dimensional Dyson Brownian motion is the standard Ornstein-

Uhlenbeck process H(t) on H. More explicitly, H(t) is the Markov process satisfying

the SDE

(4.2) dH =
1p
N

dB � 1

2
H dt ,

where B(t) is Brownian motion on the space of N ⇥N real symmetric matrices with

quadratic covariation hBij , Bkli(t) = (�ik�jl + �il�jk)t.

More intrinsically, given a finite-dimensional Hilbert space V , we denote the Hilbert

space of symmetric linear maps on V with inner product (4.1) by H(V ). Then we

define Dyson Brownian motion (DBM) on V to be the standard Ornstein-Uhlenbeck

process on H(V ). With this point of view, the usual N -dimensional DBM is the

DBM on V = RN , and the constrained DBM is the DBM on V = e

?. Note that the

normalization N in (4.1) does not need to agree with the dimension of V , which is

N � 1 for V = e

?. We make the convention to always normalize the inner product

(4.1) by N , no matter the dimension of V , and always denote the dimension of V by

M . Finally, we denote the inner product on V by v ·w for v,w 2 V .
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Definition 4.2 (Constrained DBM and GOE). The constrained DBM is the DBM

on e

?, i.e. the standard Ornstein-Uhlenbeck process on H(e?) with inner product

(4.1). The constrained GOE is the standard Gaussian measure on H(e?) with inner

product (4.1).

Thus, up to a change of basis, the constrained DBM is equivalent to the usual

(N � 1)-dimensional DBM, with the minor di↵erence of normalization by N rather

than N � 1. However, since the definition of the d-regular graph is tied to the

standard basis of RN , it is frequently convenient to work with the constrained DBM

in the standard basis of RN .

Next, in accordance with the decomposition RN = e

?� span(e), we have a canon-

ical isomorphism H 7! H̃ := H � 0 from H(e?) to the set of matrices

(4.3) M := {H 2 RN⇥N : H = H⇤, He = 0} .

Throughout this paper, we tacitly identify H and H̃.

We denote by Cn(M) the space of functions F : M ! C with continuous bounded

derivatives up to order n. Sometimes it will be convenient to compute derivatives of

functions F 2 Cn(M) in directions of RN⇥N that do not lie in M, which is made

possible by the following convention.

Definition 4.3. Let P = I � ee

⇤ be the orthogonal projection from RN onto e

?. We

extend any function F 2 Cn(M) to a Cn-function on RN⇥N through

H 7�! F

✓

1

2
P (H +H⇤)P

◆

,

and denote this extended function also by F . Finally, for any F 2 C1(M) and

i, j 2 [[1, N ]], we use the abbreviation @ijF (H) ⌘ @F
@H

ij

(H).
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k

j

l

i

Figure 12. A simple switching is given by replacing the solid edges
by the dashed edges.

From now on, we take W to be the constrained GOE and H ⌘ H(t) to be the

constrained DBM, with initial condition

(4.4) H(0) :=
1p
d� 1

(A� dee⇤) 2 M .

Here A is the adjacency matrix of the random d-regular graph. In particular, the

eigenvalues of H(0) as an element of H(e?) are the rescaled nontrivial eigenvalues of

A.

4.1.2. Switchings. Simple switchings are an especially convenient generating set of

M; they play a central role throughout this paper. For any i, j, k, l 2 [[1, N ]] we

define the simple switching ⇠klij 2 M by

(4.5) ⇠klij := �ij +�kl ��ik ��jl where (�ij)pq := �ip�jq + �iq�jp .

The action of a simple switching ⇠klij on an adjacency matrix, given by A 7! A+ ⇠klij ,

amounts to adding the edges {i, j}, {k, l} and removing the edges {i, k}, {j, l}; this
is illustrated in Figure 12 and made precise in (4.29) below. In this section, the four

vertices need not be distinct.

Next, we define the abbreviations

(4.6) Hkl
ij := Tr(⇠klijH) , @kl

ij := @⇠kl
ij

= Tr(⇠klij @) ,
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for all i, j, k, l 2 [[1, N ]]. Here @X denotes the directional derivative in the direction

X. Explicitly, expressed in the standard basis on RN , we have

Hkl
ij = 2(Hij +Hkl �Hik �Hjl) ,(4.7)

@kl
ijF (H) = 2(@ij + @kl � @ik � @jl)F (H) ,(4.8)

where F 2 C1(M). With these abbreviations, the generator of the constrained DBM

can be expressed in terms of switchings as stated in the following proposition.

Proposition 4.4. The generator of the constrained DBM from Definition 4.2 is

(4.9) L :=
1

16N3

X

i,j,k,l

(@kl
ij )

2 � 1

32N2

X

i,j,k,l

Hkl
ij @

kl
ij .

This means that for any F 2 C2(M) we have

(4.10)
d

dt
E[F (H(t))] = E[LF (H(t))] .

Proof. Let Ĥ(t) be the standard Ornstein-Uhlenbeck process from Definition 4.1 on

the space H(RN�1) with inner product (4.1). As in the example (4.2), we obtain the

quadratic covariation

(4.11) hĤij , Ĥkli(t) =
1

N
(�ik�jl + �il�jk)t .

Next, let R 2 O(N) satisfy ReN = e. Then, since the inner product (4.1) is

invariant under orthogonal conjugations, we can express the constrained DBM as

H(t) = R(Ĥ(t) � 0)R⇤. We abbreviate H ⌘ H(t) and write for F 2 C2(M), using

Itô calculus,

dEF (H) = �1

2

X

i,j

E
⇥

Hij(@ijF )(H)
⇤

dt+
1

2

X

i,j,k,l

E
⇥

(@ij@klF )(H) dhHij, Hkli
⇤

.
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By definition of R we have RiN = 1p
N

for all i, so that (4.11) yields

dhHij, Hkli =
1

N

N�1
X

m,n=1

�

RimRjnRkmRln +RimRjnRknRlm

�

dt

=
1

N

✓

�ik � 1

N

◆✓

�jl � 1

N

◆

dt+
1

N

✓

�il � 1

N

◆✓

�jk � 1

N

◆

dt .

Thus, for any F 2 C2(M) we have (4.10) with

(4.12) L =
1

N3

X

i,j,k,l

@ij(@ij + @kl � @il � @jk)� 1

2

X

i,j

Hij@ij .

Finally, using
P

j Hij =
P

j Hji = 0 for H 2 M, we observe that L from (4.12) can

be rewritten as (4.9). ⇤

4.1.3. Outline of proof of Theorems 1.3–1.4. Theorems 1.3–1.4 are an immediate

consequence of the following two propositions. As in [19], we set

(4.13) D := d ^ N2

d3
.

We always assume d 2 [N↵, N2/3�↵], which implies D > N↵. To state the two

propositions concisely, we introduce the following definition. It will also be convenient

in the proofs.

Definition 4.5. Given H 2 M, we denote by �1 > · · · > �N�1 the eigenvalues of

H|e?. Consider two random matrix ensembles H1 and H2 in M. Then we say that

(i) the bulk eigenvalue gap statistics of H1 and H2 coincide if for any n 2 N,

� 2 C1
c (Rn), and  > 0, we have

(4.14)
�

EH1 � EH2

�

�
�

N⇢sc(�i)(�i � �i+1), . . . , N⇢sc(�i)(�i � �i+n)
�

= o(1)

as N ! 1, uniformly in i 2 [[N, (1� )N ]];
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(ii) the averaged bulk eigenvalue correlation functions of H1 and H2 coincide if

for any n 2 N, � 2 C1
c (Rn), c > 0 small enough, and E 2 (�2, 2), we have

(4.15)
Z

Rn

�(x1, . . . , xn)N
n
�

p(n)H1
� p(n)H2

�

✓

E +
dx1

N⇢sc(E)
, . . . , E +

dxn

N⇢sc(E)

◆

= o(1) ,

where the correlation functions p(n)H
i

are defined as in (1.8).

Moreover, we say that the bulk eigenvalue statistics of H1 and H2 coincide if (i) and

(ii) hold.

Proposition 4.6. For any fixed � > 0 and t 6 N�1��D1/2, the bulk eigenvalue

statistics of H(0) and H(t) coincide.

Proposition 4.7. For any fixed � > 0 and t > N�1+�, the bulk eigenvalue statistics

of H(t) and H(1)
d
= W coincide.

Propositions 4.6–4.7 are proved in Section 4.4. As mentioned in Section 1.1, our

main e↵ort and novelty is in proving Proposition 4.6. Proposition 4.7 is essentially a

consequence of general results on universality of local eigenvalue statistics with small

Gaussian component [63, 62]. The local semicircle law of [19] is an important input

in the proofs of both propositions.

Proof of Theorem 1.4. The proof is immediate from Propositions 4.6–4.7, with � 6

↵/4. ⇤

4.2. Switchings and short-time comparision. The main result of this section is

Proposition 4.8 below. To state it, we introduce the following Sobolev-type semi-

norms, whereby the derivatives are taken in the directions of all switchings

(4.16) X :=
�

⇠klij 2 RN⇥N : i, j, k, l 2 [[1, N ]]
 

.
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First, for r > 1, we define an Lr-seminorm on C0(M) through

(4.17) kFkr,t :=
�

E|F (H(t))|r�1/r .

Then, we extend this seminorm to include derivatives: for F 2 Cn(M) we define

(4.18) k@nFkr,t :=

�

�

�

�

sup
✓2[0,1]n

sup
X2Xn

�

�@X1 · · · @Xn

F ( · + (d� 1)�1/2 ✓ ·X))
�

�

�

�

�

�

r,t

,

where @Y denotes the directional derivative in the direction Y , and for ✓ 2 [0, 1]n and

X 2 X n we abbreviate

✓ ·X := ✓1X1 + · · ·+ ✓nXn .

Proposition 4.8. Let H(t) be the constrained Dyson Brownian motion from Defi-

nition 4.2 with initial condition (4.4). Fix " > 0 and let r ⌘ r(") be large enough

depending on ". Then for any F 2 C4(M) we have

(4.19) EF (H(t))� EF (H(0)) = O

 

D�1/2N1+" max
16i64

Z t

0

k@iFkr,s ds
!

.

In the applications in Section 4.4, we will use functions F satisfying k@iFkr,s 6 N c

for i 6 4 and a constant c > 0 that can be chosen arbitrarily small. Thus, for

t 6 N�1��D1/2 the right-hand side of (4.19) will be O(N��+"+c) which is ø(1) provided

that c+ " < �.

The starting point for the proof of Proposition 4.8 is the idea of [24, Lemma A.1],

namely to estimate the left-hand side of (4.19) by estimating E(LF (H(t))). However,

since the entries of H(t) are not independent, a di↵erent approach from [24] is needed

to control E(LF (H(t))). We do this by approximating the constrained DBM by a

Markovian jump process induced by switchings. This process is defined as follows.
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4.2.1. Switching dynamics. We introduce a Markovian jump process on simple regu-

lar graphs by defining its generator

(4.20) Qf(A) :=
1

8Nd

X

i,j,m,n

Imn
ij (A)

⇣

f(A� ⇠mn
ij )� f(A)

⌘

,

where we recall the definition of a switching from (4.5) and introduce the indicator

function

(4.21) Imn
ij (A) := AijAmn(1� Aim)(1� Ain)(1� Ajm)(1� Ajn) .

The indicator function Imn
ij (A) ensures that the graph encoded by A contains the

edges {i, j} and {m,n} but no other edges between the four vertices {i, j,m, n} (i.e.

its restriction to {i, j,m, n} is 1-regular).

Thus, the process generated by Q is a Markovian jump process whose jump times

are the events of a Poisson clock with a constant rate; at each event of the clock,

four vertices are selected uniformly at random, and a switching as in Figure 12 is

performed on the graph if the four vertices are connected by exactly two edges. It

is not hard to show that the uniform measure on d-regular graphs is invariant under

this jump process.

Proposition 4.9. The uniform measure on simple d-regular graphs is invariant under

Q. This means that for any function f on the set of simple d-regular graphs we have

E(Qf(A)) = 0.

The proof of the proposition is given in Section 4.2.2, in a slightly more general

context. The following proposition shows that the switching jump process generated

by Q is well approximated by the constrained DBM generated by L.

The generator L acts naturally on functions of H (denoted henceforth by an upper-

case F ), and the generator Q on functions of A (denoted henceforth by a lowercase
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f). It is therefore convenient to introduce, for any F 2 Cn(M), the abbreviations

(4.22) H = HA :=
1p
d� 1

(A� dee⇤) , f(A) = fF (A) := F (HA) .

Proposition 4.10. For any F 2 C4(M) and using the notation (4.22) we have

(4.23) Qf(A) = LF (H) +R ,

where

(4.24) ER = O(D�1/2N1+") max
16i64

k@iFkr,0 .

Here E denotes expectation with respect to the uniform measure on random d-regular

graphs A.

The proof of this proposition is also deferred to Section 4.2.2 below. Roughly, the

idea of the proof is as follows. By Taylor expansion, we obtain

(4.25) Qf(A) ⇡ 1

8Nd

X

i,j,m,n

AijAmn

✓

�@mn
ij f(A) +

1

2
(@mn

ij )2f(A)

◆

with high probability. Now EAij =
d
N if i 6= j. By expanding AijAmn = ( d

N + (Aij �
d
N ))( d

N +(Amn� d
N )), and keeping only the leading terms, we find that the right-hand

side of (4.25) becomes by LF (H). Here, for the second-order term on the right-hand

side of (4.25), the leading term from AijAmn is d2

N2 ; for the first-order term on the

right-hand side of (4.25), the leading term from AijAmn is d
N (Aij� d

N )+ d
N (Amn� d

N ).

Further error terms result from the dependence of the entries of the adjacency matrix.

Before giving the proofs of Propositions 4.9–4.10, we deduce Proposition 4.8 from

them.
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Proof of Proposition 4.8. By (4.10), it su�ces to estimate E[LF (H(t))]. By explicit

solution of the constrained DBM, H(t), we find for any fixed t > 0 that

(4.26) H(t)
d
= e�t/2H(0) + (1� e�t)1/2W

where W is a copy of the constrained GOE independent of H(0). For the remainder

of the proof, we identify the right-hand side with H(t), abbreviate H ⌘ H(0), and

introduce the two functions

FW (H) = FH(W ) := F
�

e�t/2H + (1� e�t)1/2W
�

,

where the choice of the argument determines the variables on which the generator L

acts. We recall the generator L from (4.9),

L =
1

16N3

X

i,j,k,l

(@kl
ij )

2 � 1

32N2

X

i,j,k,l

Hkl
ij @

kl
ij .

From @2 = (e�t + (1� e�t))@2, e�t/2@F = @FW , and (1� e�t)1/2@F = @FH , we then

deduce that LF
�

e�t/2H + (1� e�t)1/2W
�

= LFW (H) + LFH(W ). We therefore get

E[LF (H(t))] = E[LFW (H)] + E[LFH(W )] = E[LFW (H)] ,

where in the second step we used that the constrained GOE, W , is invariant with

respect to the generator L.

Next, we define fW (A) := FW (H) where H ⌘ HA is defined as (4.22). By Proposi-

tion 4.9, the random d-regular graph A is invariant with respect to the generator Q,

and Proposition 4.10 therefore yields

E[LFW (H)] = E[QfW (A)] + O(D�1/2N1+") max
16i64

k@iFWkr,0

= O(D�1/2N1+") max
16i64

k@iFkr,t .
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i

lk

jj

l k

i

Figure 13. Given four vertices i, j, k, l with two edges between them,
there are two possible switchings. By equipping the edges with direc-
tions, one of these two switchings can be selected canonically.

Thus, with (4.10), we have shown that

d

dt
E[F (H(t))] = O(D�1/2N1+") max

16i64
k@iFkr,t ,

and the claim follows by integrating over t. ⇤

4.2.2. Proofs of Propositions 4.9–4.10. Propositions 4.9–4.10 concern switchings of

regular graphs. Switchings played an important role in the proof of the local semicircle

law for random regular graphs [19]. Here we use simple switchings instead of the

double switchings needed in [19].

Given two disjoint edges of a regular graph such that the graph has no other edges

between the vertices incident to these two edges, there are two possible switchings;

see Figure 13. To specify one of these two switchings, it is convenient to assign to

each of the edges to be switched a direction; there is then a canonical choice between

the two possible switchings. We write ij for the edge {i, j} directed from i to j.

We consider sets S of two directed edges of the complete graph, which we write in

the form S = {ij, kl}. We denote by [S] = {i, j, k, l} the set of vertices incident to

the edges of S. For two such sets S and S 0, we define the indicator functions

I(S) ⌘ I(S;A) := 1(|[S]| = 4 and E|[S] is 1-regular) ,(4.27)

J(S, S 0) ⌘ J(S, S 0;A) := 1([S] \ [S 0] = ;) ,(4.28)

where E ⌘ E(A) := {{i, j} : Aij = 1} is the set of (undirected) edges of the graph

encoded by A, and E|B := {e 2 E : e ⇢ B} is the restriction of the graph E to the
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subset of vertices B. The indicator functions are illustrated in Figure 14. Note that

Imn
ij = AijAmnI({ij,mn}) (recall (4.21)).

Remark 4.11. The definitions (4.27)–(4.28) are similar to those given in [19, Sec-

tion 6], with the following di↵erences. First, the current set S consists of two directed

edges instead of the three undirected edges in [19]. Because of the directions contained

in the current set S, it e↵ectively incorporates the extra parameter s of [19, Section 6].

Second, the edges in S are edges of the complete graph, and we do not assume that

they are contained in some regular graph A; we will ultimately define the switching

associated with the set S to act trivially unless S is contained in the edges E of the

given graph.

For a set S = {ij, kl} of two directed edges, we define the switching

(4.29) TS(A) :=

8

>

>

>

>

>

<

>

>

>

>

>

:

A� ⇠klij if I(S) = 1, Aij = 1, Akl = 1

A+ ⇠klij if I(S) = 1, Aik = 1, Ajl = 1

A otherwise ,

where we recall the definition of ⇠klij from (4.5). In words, TS(A) switches the edges S

if they are contained in A and are switchable in the sense that the switching results

again in a d-regular graph. Moreover, for S, S 0 as above, we define

TS,S0(A) :=

8

>

>

<

>

>

:

TS0(TS(A)) if J(S, S 0) = 1

A otherwise .

(4.30)

In words, TS,S0(A) switches the edges in S and S 0 if they are contained in A and the

two switchings do not interfere with each other.

Lemma 4.12. For any fixed S, S 0 we have A
d
= TS(A) and A

d
= TS,S0(A).
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S0

S S

Figure 14. In the left diagram, I(S) = 0 since the restricted graph
is not 1-regular. In the right diagram, J(S, S 0) = 0 since the two sets
of vertices intersect.

Proof. It is easy to check that TS(A) is a d-regular graph if and only if A is. Moreover,

TS(TS(A)) = A, so TS is a bijection on the set of d-regular graphs. Since the dis-

tribution of A is uniform, we obtain A
d
= TS(A). The second claim follows similarly

from TS,S0(TS,S0(A)) = A. ⇤

Now Proposition 4.9 follows easily.

Proof of Proposition 4.9. For any f , we get

X

i,j,m,n

E
�

Imn
ij (A)f(A)

�

=
X

i,j,m,n

E
�

AijAmnI({ij,mn};A)f(A)�

=
X

i,j,m,n

E(AimAjnI({ij,mn};A+ ⇠mn
ij )f(A+ ⇠mn

ij ))

=
X

i,j,m,n

E
�

AijAmnI({ij,mn};A)f(A� ⇠mn
ij )
�

=
X

i,j,m,n

E(Imn
ij (A)f(A� ⇠mn

ij )) ,

where the first and last steps follows from the definition of Imn
ij , the second step

from Lemma 4.12, and the third step from the exchangability of i, j,m, n and using

I(S;A) = I(S;TS(A)). This concludes the proof. ⇤

For the proof of Proposition 4.10 we shall need estimates on the moments of en-

tries of the adjacency matrix, as well as estimates on such moments restricted to
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low-probability events where the indicator functions (4.27)–(4.28) are zero. These

estimates are collected in the following sequence of lemmas.

The following two lemmas show that moments of the entries of the adjacency

matrix behave roughly like those of an Erdős-Rényi graph.

Lemma 4.13. Let b ⌧ N and i1, j1, . . . , ib, jb 2 [[1, N ]]. Then for any p 2 [[1, N ]] and

q 2 [[1, N ]] \ {i1, j1, . . . , ib, jb}, we have

(4.31) E(Ai1j1 · · ·Ai
b

j
b

Apq) = O
⇣ d

N

⌘

E(Ai1j1 · · ·Ai
b

j
b

) ,

where we use the convention E(Ai1j1 · · ·Ai
b

j
b

) = 1 if b = 0.

Proof. Set X := Ai1j1 · · ·Ai
b

j
b

and I := {i1, j1, . . . , ib, jb, p}. Then, since
P

n Apn = d

for any p, we find for any q /2 I that

E(X) =
1

d

X

n

E(XApn) =
1

d

X

n 62I

E(XApn) +
1

d

X

n2I

E(XApn)

> 1

d

X

n 62I

E(XApn) =
N � |I|

d
E(XApq) ,

where in the third step we used that XApn > 0 and in the last step that the law of

A is invariant under permutation of vertices. Using that |I| 6 N/2 by assumption

on b, the claim now follows. ⇤

As a consequence of Lemma 4.13, we obtain the following explicit bounds.

Lemma 4.14. Suppose that |{i, j,m, n}| = 4 � a and |{i, j, k, l,m, n, p, q}| = 8 � b.

Then

E(AijAmn) = O
⇣ d

N

⌘2�ba/2c
,(4.32)

E(AijAmnAklApq) = O
⇣ d

N

⌘4�bb/2c
.(4.33)
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Proof. Since Ass = 0 for all s, we can assume that i 6= j, m 6= n, k 6= l, and p 6= q,

and thus a 6 2 and b 6 4. Then (4.32)–(4.33) follow easily from Lemma 4.13. ⇤

In the next two lemmas, we estimate moments restricted to low-probability events

where the indicator functions (4.27)–(4.28) vanish, i.e. we estimate the contribution

of graphs A that are not switchable. Throughout the rest of this section, for given

indices i, j, k, l,m, n, p, q we use the abbreviations

I1 := I({ij,mn};A) , I2 := I({kl, pq};A) ,(4.34)

J12 := J({ij,mn}, {kl, pq};A) , I12 := I1I2J12 ,(4.35)

with I and J defined in (4.27)–(4.28).

Lemma 4.15. Let |{i, j,m, n}| = 4� a and |{i, j, k, l,m, n, p, q}| = 8� b. Then

E((AijAmn + AimAjn)(1� I1)) = O
⇣ d

N

⌘3�a

.(4.36)

E((AijAmn + AimAjn)(AklApq + AkpAlq)(1� I12)) = O
⇣ d

N

⌘5�b

.(4.37)

Proof. First, assume that i, j, k, l,m, n, p, q are all distinct, i.e. we consider the case

a = b = 0. Then, since |{i, j,m, n}| = 4 and I1 = 0 implies that the graph A

restricted to {i, j,m, n} is not 1-regular, we find

E(AijAmn(1� I1)) 6 E(AijAmn(Aim + Ain + Ajm + Ajn)) ,

E(AimAjn(1� I1)) 6 E(AimAjn(Aij + Amn + Ain + Ajm)) ,

and Lemma 4.13 implies that the right-hand sides are bounded by O(d/N)3. The

proof of (4.37) for b = 0 is analogous. We only consider the term AijAklAmnApq;

the others dealt with similarly. First, note that J12 = 1 if |{i, j, k, l,m, n, p, q}| = 8.

Since |{i, j, k, l,m, n, p, q}| = 8 and I1I2 = 0 imply that E|{i,j,m,n} or E|{k,l,p,q} has at
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least three edges, we find

E
�

(AijAmnAklApq(1� I1I2J12)
�

= E
�

(AijAmnAklApq(1� I1I2)
�

6 E
�

(AijAmnAklApq(Aim + Ain + Ajm + Ajn + Akp + Akq + Alp + Alq)
�

= O
⇣ d

N

⌘5

,

where the last step follows from Lemma 4.13.

Finally, if a > 0 we have I1 = 0, and if b > 0 we have I12 = 0. In these cases,

we can directly apply (4.32) and (4.33), respectively, and the claim follows since

2� ba/2c > 3� a if a > 0 and 4� bb/2c > 5� b if b > 0. ⇤

As a consequence of Lemma 4.15, we obtain the following averaged estimates.

Lemma 4.16. If |{i, j}| = 2� a and |{i, j, k, l}| = 4� b, then

1

N2

X

m,n

E((AijAmn + AimAjn)(1� I1)) = O
⇣ d

N

⌘3�a

,(4.38)

1

N4

X

m,n

X

p,q

E((AijAmn + AimAjn)(AklApq + AkpAlq)(1� I12)) = O
⇣ d

N

⌘5�b

.

(4.39)

Moreover,

1

N4

X

i,j,m,n

E((AijAmn + AimAjn)(1� I1)) = O
⇣ d

N

⌘3

,(4.40)

1

N8

X

i,j,m,n

X

k,l,p,q

E((AijAmn + AimAjn)(AklApq + AkpAlq)(1� I12)) = O
⇣ d

N

⌘5

.

(4.41)

Proof. To prove (4.38), we split the summation over m,n by fixing |{i, j,m, n}| =
4� a� s where s 2 [[0, 2]]; there are O(N2�s) terms corresponding to each s 2 [[0, 2]].

By (4.36), the left-hand side of (4.38) is bounded by

O
⇣ d

N

⌘3�a

+
2
X

s=1

O(N�s)O
⇣ d

N

⌘3�a�s

= O
⇣ d

N

⌘3�a

.
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The proofs of (4.39)–(4.41) are analogous. ⇤

Finally, as a consequence of Lemmas 4.13–4.16 and the Hölder inequality, we obtain

the following estimates incorporating an arbitrary function f(A). These and the

remainder of the proof of Proposition 4.10 are simplest to state in terms of versions

of the seminorms (4.17)–(4.18) for t = 0 without rescaling by (d � 1)�1/2. Thus,

instead of (4.17) and (4.18), we use the seminorms

kfkr :=
�

E|f(A)|r�1/r

and

k@nfkr :=

�

�

�

�

sup
✓2[0,1]n

sup
X2Xn

�

�@X1 · · · @Xn

f( · + ✓ ·X)
�

�

�

�

�

�

r

.

Lemma 4.17. Fix " > 0 and let r ⌘ r(") be large enough depending on ". Let

f 2 C0(M) satisfy kfkr 6 1. Then if |{i, j}| = 2�a and |{i, j, k, l}| = 4� b, we have

1

N2

X

m,n

E
�

AijAmnf(A)
�

= O
⇣ d

N

⌘2�ba/2c�"

,(4.42)

1

N4

X

m,n,p,q

E
�

AijAmnAklApqf(A)
�

= O
⇣ d

N

⌘4�bb/2c�"

,(4.43)

1

N2

X

m,n

E
�

(AijAmn + AimAjn)Ī1f(A)
�

= O
⇣ d

N

⌘3�a�"

,(4.44)

1

N4

X

m,n

X

p,q

E
�

(AijAmn + AimAjn)(AklApq + AkpAlq)Ī12f(A)
�

= O
⇣ d

N

⌘5�b�"

,

(4.45)

1

N4

X

i,j,m,n

E
�

(AijAmn + AimAjn)Ī1f(A)
�

= O
⇣ d

N

⌘3�"

,(4.46)

1

N8

X

i,j,m,n

X

k,l,p,q

E
�

(AijAmn + AimAjn)(AklApq + AkpAlq)Ī12f(A)
�

= O
⇣ d

N

⌘5�"

,

(4.47)
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where Ī1 := 1� I1, Ī12 := 1� I12, and the indicator functions I1 and I12 were defined

in (4.34)–(4.35).

Proof. We only prove (4.46); the other estimates are proved similarly and we comment

on the di↵erences at the end of the proof. By Hölder’s inequality, applied twice, first

to E(·) and then to the sum over m,n, we obtain from (4.40) that

1

N4

X

i,j,m,n

E
�

(AijAmn + AimAjn)(1� I1)f(A)
�

6 1

N4

X

i,j,m,n

⇥

E
�

(AijAmn + AimAjn)(1� I1)
�⇤1�1/rkfkr

6
✓

1

N4

X

i,j,m,n

E((AijAmn + AimAjn)(1� I1))

◆1�1/r

kfkr

6 O
⇣ d

N

⌘3�3/r

kfkr = O
⇣ d

N

⌘3�"

kfkr ,

where we chose r large enough that 3/r 6 ".

To prove (4.47), we use (4.41) instead of (4.40), and to prove (4.42)–(4.43) we

apply (4.31) instead of (4.36). To prove (4.44)–(4.45), we use (4.38)–(4.39). This

concludes the proof. ⇤

The next lemma estimates the e↵ect of replacing Aij by its mean d/N , or, equiva-

lently, of conditioning on {Aij = 1}. Since the entries of A are not independent, we

use switchings to analyse such a conditioning.

Lemma 4.18. Fix " > 0 and let r ⌘ r(") be large enough depending on ". For any

f 2 C2(M) and any i, j, k, l with |{i, j}| = 2� a and |{i, j, k, l}| = 4� b, we have

E
⇣

f(A)
⇣

Aij � d

N

⌘⌘

= O
⇣ d

N

⌘1�"

k@fkr +O
⇣ d

N

⌘2�a�"

kfkr ,(4.48)

E
⇣

f(A)
⇣

Aij � d

N

⌘⇣

Akl � d

N

⌘⌘

= O
⇣ d

N

⌘2�"

k@2fkr +O
⇣ d

N

⌘3�b�"

kfkr .(4.49)
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Proof. We begin with (4.48). Since A 2 M + dee⇤, we have
P

m,n Amn = Nd and
P

m Aim =
P

n Ajn = d for all i, and the left-hand side of (4.48) is therefore equal to

(4.50) E
✓

f(A)

✓

Aij � d

N

◆◆

=
1

Nd

X

m,n

E
�

f(A)(AijAmn � AimAjn)
�

.

Using (4.44), using the notation from (4.34), we therefore find

E
✓

f(A)

✓

Aij � d

N

◆◆

=
1

Nd

X

m,n

E
�

f(A)(AijAmn � AimAjn)I1
�

+O
⇣ d

N

⌘2�a�"

kfkr .

Because of the indicator function I1, the first term on the right-hand side vanishes un-

less a = 0. Therefore we may assume that a = 0 when estimating it. By Lemma 4.12,

and since I1(A) = I1(TS(A)) with S = {ij,mn}, the first term on the right-hand side

equals

(4.51)
1

Nd

X

m,n

E
⇣

�

f(A)� f(A� ⇠mn
ij )
�

AijAmnI1
⌘

.

The di↵erence of the f ’s is bounded in absolute value by sup✓2[0,1] supX2X |@Xf(A+

✓X)|. Hence, (4.42) implies that (4.51) is bounded by

O
⇣ d

N

⌘1�"

k@fkr .

This concludes the proof of (4.48).

The proof of (4.49) is similar. As in (4.50), we write

⇣

Aij � d

N

⌘⇣

Akl � d

N

⌘

=
1

(Nd)2

X

m,n,p,q

(AijAmn � AimAjn)(AklApq � AkpAlq) .

As above, we write 1 = I12 + (1 � I12) inside the expectation on the left-hand side

of (4.49). The second term yields a contribution of order O( d
N )3�b�"kfkr, by (4.45).

The first term is zero unless b = 0 because of the factor J12 in I12. We may therefore

assume that b = 0 for the estimate of the first term. Using Lemma 4.12, as in (4.51),
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we find that the first term is equal to

(4.52)
1

(Nd)2

X

m,n,p,q

E
⇣

�

f(A)� f(A� ⇠mn
ij )� f(A� ⇠pqkl ) + f(A� ⇠mn

ij � ⇠pqkl )
�

AijAmnAklApqI12
⌘

.

The di↵erence of the four f ’s is bounded in absolute value by

sup
✓1,✓22[0,1]

sup
X1,X22X

�

�@X1@X2f(A+ ✓1X1 + ✓2X2)
�

� .

By (4.43), we therefore find that (4.52) is bounded in absolute value by

O
⇣ d

N

⌘2�"

k@2fkr .

This concludes the proof. ⇤

Finally, with the preparations provided by the previous lemmas, we now complete

the proof of Proposition 4.10.

Proof of Proposition 4.10. First note that Imn
ij = AijAmnI1. By Taylor expansion,

and writing I1 = 1 + (I1 � 1), we therefore have

(4.53) Qf(A) =
1

8Nd

X

i,j,m,n

AijAmn

⇣

�@mn
ij f(A) +

1

2
(@mn

ij )2f(A))
⌘

+N2(R1 +R2) ,

where

R1 = O
⇣N

d

⌘ 1

N4

X

i,j,m,n

AijAmn(1� I1) sup
✓2[0,1]

sup
X2X

|@Xf(A+ ✓X)| ,

R2 = O
⇣N

d

⌘ 1

N4

X

i,j,m,n

AijAmn sup
✓2[0,1]3

sup
X2X 3

|@X1@X2@X3f(A+ ✓ ·X)| .

By (4.46) and (4.42), respectively, the two error terms are estimated by

ER1 = O
⇣ d

N

⌘2�"

k@fkr , ER2 = O
⇣ d

N

⌘1�"

k@3fkr .
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Next, we estimate the main terms in (4.53), which we write as

(4.54)
1

8Nd

X

i,j,k,l

AijAkl

⇣

�@kl
ij f(A) +

1

2
(@kl

ij )
2f(A))

⌘

.

The idea is to write Aij = d
N + (Aij � d

N ) and likewise for Akl. For the second-

order term in (4.54), the term obtained by selecting both factors d
N yields the main

contribution. More precisely, we write

1

16Nd

X

i,j,k,l

AijAkl(@
kl
ij )

2f(A) =
d

16N3

X

i,j,k,l

(@kl
ij )

2f(A) +N2(R3 +R4) ,

where

R3 =
N

8d

1

N4

X

i,j,k,l

✓

�

(@kl
ij )

2f(A)
�

✓

Aij � d

N

◆

d

N

◆

,

R4 =
N

16d

1

N4

X

i,j,k,l

✓

�

(@kl
ij )

2f(A)
�

✓

Aij � d

N

◆✓

Akl � d

N

◆◆

.

By (4.48) and (4.49), respectively, with f replaced by (@kl
ij )

2f , we obtain

E(R3 +R4) = O
⇣ d

N

⌘1�"⇣

k@3fkr + k@4fkr
⌘

+O
⇣ d

N

⌘2�"

k@2fkr .

Next, we estimate the first-order term in (4.54) using a similar argument. Here

the term obtained by selecting both factors d
N from Aij and Akl vanishes because

P

i,j,k,l @
kl
ij = 0; the main contribution is given by the mixed term. More precisely, we

write

1

8Nd

X

i,j,k,l

AijAkl@
kl
ij f(A) =

d

8N3

X

i,j,k,l

@kl
ij f(A) +

1

4N2

X

i,j,k,l

✓

Aij � d

N

◆

@kl
ij f(A) +N2R5

=

p
d� 1

4N2

X

i,j,k,l

Hij@
kl
ij f(A) +N2R5

=

p
d� 1

32N2

X

i,j,k,l

Hkl
ij @

kl
ij f(A) +N2R5 ,
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where

R5 =
N

8d

1

N4

X

i,j,k,l

✓

�

@kl
ij f(A)

�

✓

Aij � d

N

◆✓

Akl � d

N

◆◆

.

By (4.49), with f replaced by @kl
ij f , we obtain

ER5 = O
⇣ d

N

⌘1�"

k@3fkr +O
⇣ d

N

⌘2�"

k@fkr .

We conclude that

Qf(A) =
d

16N3

X

i,j,k,l

(@kl
ij )

2f(A)�
p
d� 1

32N2

X

i,j,k,l

Hkl
ij @

kl
ij f(A) +N2

5
X

i=1

Ri

=
d� 1

16N3

X

i,j,k,l

(@kl
ij )

2f(A)�
p
d� 1

32N2

X

i,j,k,l

Hkl
ij @

kl
ij f(A) +N2

6
X

i=1

Ri ,

where we defined

R6 :=
1

16N

1

N4

X

i,j,k,l

(@kl
ij )

2f(A) .

Clearly, ER6 = O
�

1
N

�k@2fkr.
Using the notations introduced in (4.22), we have

p
d� 1 @f(A) = @F (H). Hence

we obtain (4.23) with R := N2
P6

i=1 Ri. The error term R is estimated, using the

above estimates on ERi, as

ER = O(N2+")



⇣ d

N

⌘2
�k@fkr + k@2fkr

�

+
1

N
k@2fkr + d

N

�k@3fkr + k@4fkr
�

�

= O(D�1/2N1+")



k@Fkr,0 +D�1/2k@2Fkr,0 + k@3Fkr,0 +D�1/2k@4Fkr,0
�

,

as claimed. ⇤

4.3. Stability of eigenvectors and eigenvalues. In this section we derive basic

stability properties for the eigenvalues and eigenvectors of the Dyson Brownian mo-

tion H(t). These allow us to deduce estimates on the eigenvalues and eigenvectors of

H(t), assuming similar estimates have been proved for H(0).



175

As discussed in Section 4.1.1, we consider a general Dyson Brownian motion H(t)

on an M -dimensional Hilbert space V , with normalization constant N as in (4.1). For

the usual DBM we have N = M , while for the constrained DBM we have M = N�1;

we always assume that N and M are comparable. We denote by �1(t) > · · · >

�M(t) the eigenvalues of H(t), and by v1(t), . . . ,vM(t) 2 V the associated normalized

eigenvectors of H(t). Moreover, we define the Stieltjes transform of the empirical

spectral measure of H(t) by s(t; z) := 1
M

PM
i=1

1
�
i

(t)�z .

Throughout the rest of the paper, we use the following notion of high probability

events and high probability bounds, introduced in [37].

Definition 4.19. (i) We say that an event ⌅ has high probability if for every

⇣ > 0 there exists an N0(⇣) > 0 such that P(⌅c) 6 N�⇣ for N > N0(⇣).

(ii) For nonnegative random variables A,B, we write A � B or A = O�(B) if

for any ⇣ > 0 there exists an N0(⇣) such that P(A > N1/⇣B) 6 N�⇣ for

N > N0(⇣).

If the event ⌅ from (i) and the random variables A and B from (ii) depend on

some additional parameter u 2 U in some possibly N-dependent set U , we we say

that (i) and (ii) hold uniformly in u if N0(⇣) does not depend on u.

Throughout the following, the definitions (i) and (ii) will always be uniform in

all parameters, such as z, any matrix indices, and deterministic vectors. Note that

� is compatible with the usual algebraic operations, so that for instance we have
P

i Ai �
P

i Bi provided that Ai � Bi for all i and the size of the index set for i is

NO(1).

4.3.1. Delocalization of eigenvectors. The following result shows that if all eigenvec-

tors of H(0) are uniformly delocalized in some direction q 2 V , then with high

probability they remain delocalized in this direction under the DBM on V , for any

time t > 0.
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Lemma 4.20. Suppose that H(t) is the DBM on an M-dimensional space V . Let

q 2 V and suppose that maxi |q · vi(0)| 6 B. Then, for any t > 0, any i 2 [[1,M ]],

and ⇠ � 1,

(4.55) P (|q · vi(t)| > ⇠B) 6 e�
1
2 ⇠

2
.

In particular,

(4.56) |q · vi(t)| � B .

Lemma 4.20 is a simple consequence of the eigenvector moment flow (EMF) in-

troduced in [24]. Suppose for simplicity that the eigenvalues of H(0) are distinct.

Then the eigenvalue process (�i(t)) is almost surely continuous and simple for all

t > 0; see [24] for more details. We study the dynamics of the eigenvectors vi(t)

by conditioning on the eigenvalue process; see again [24] for a precise construction.

Hence, for the following argument, we condition on (�i(t)) and regard the eigenvalue

process as deterministic.

We give the definition of the EMF restricted to moments of a fixed order p 2 N. The

configuration space is ⌦p :=
�

⌘ = (⌘i)Mi=1 2 NM :
PM

i=1 ⌘i = p
 

. The configurations

⌘ 2 ⌦p are interpreted as configurations of p particles on the lattice [[1,M ]], whereby

a single site of [[1,M ]] may be occupied by multiple particles. We denote by ⌘i,j :=

⌘+1(⌘i > 0)(ej � ei) the configuration obtained from ⌘ by moving one particle from

i to j. The time-dependent generator R(t) of the EMF is defined by

(R(t)f)(⌘) :=
X

i 6=j

Wij(t)2⌘i(1 + 2⌘i)(f(⌘
i,j)� f(⌘)) ,

where

Wij(t) :=
1

N(�i(t)� �j(t))2
.
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For our purposes, the precise form of the coe�cients Wij(t) is not important; we

only use that they are nonnegative and continuous in t. The p-particle EMF is given

by the equation

(4.57) @tft(⌘) = (R(t)ft)(⌘) , f0 : ⌦p ! R given .

This is a linear (time-dependent) ODE on a finite dimensional vector space, and thus

well-posed. It is also easy to see that it is contractive on L1(⌦) in the sense that

kftkL1(⌦
p

) 6 kf0kL1(⌦
p

).

Next, for deterministic ⌘ 2 ⌦p and q 2 V , we define

(4.58) ft(⌘) := E

"

M
Y

i=1

1

(2⌘i � 1)!!
(q · vi(t))

2⌘
i

�

�

�

�

�

�

�i(t) : i 2 [[1,M ]], t > 0
�

#

,

where n!! := n · (n � 2) · · · 3 · 1 for odd n, and by convention (�1)!! = 1. In [24,

Theorem 3.1] it is shown that ft solves (4.57).

Remark 4.21. In [24], Dyson Brownian motion is defined without the Ornstein-

Uhlenbeck drift term in the SDE (4.2), and the SDEs for the eigenvalues and eigen-

vectors are stated in [24, Definition 2.2]. In the present case, with drift term, the

SDEs for eigenvalue and eigenvector flows are given by

d�i =
dBiip
N

+
1

N

X

j:j 6=i

1

�i � �j
dt� �i

2
dt ,

dvi =
1p
N

X

j:j 6=i

dBij

�i � �j
vj � 1

2N

X

j:j 6=i

dt

(�i � �j)2
vi ,

for i = 1, 2, . . . ,M , and with B(t) a Brownian motion on the space of M ⇥M real

symmetric matrices with quadratic covariation hBij , Bkli(t) = (�ik�jl+ �il�jk)t. Thus,

the SDEs for the eigenvectors are the same with or without the drift term. Therefore

the arguments of [24, Section 3] apply verbatim in our setting as well.
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Proof of Lemma 4.20. Suppose first that H(0) has simple spectrum. Let ft be the

given by (4.58), which solves (4.57) as remarked above. Then, since the EMF (4.57)

is a contraction on L1(⌦p), we obtain from the assumption of Lemma 4.20 that

max
⌘2⌦

p

|ft(⌘)| 6 max
⌘2⌦

p

|f0(⌘)| 6 B2p .

Therefore, choosing ⌘ = p ei, we get

E
⇥

(q · vi(t))
2p
⇤

= (2p� 1)!!E[ft(⌘)] 6 (2p� 1)!!B2p ,

from which the claim follows. Finally, if H(0) does not have simple spectrum, the

same estimate holds by a simple approximation argument using the continuity of the

eigenvectors as functions of the matrix. ⇤

4.3.2. Stability of eigenvalues. The following result shows that if the empirical spec-

tral measure at t = 0 is close to the semicircle law, this remains true for t > 0. For its

statement, recall that s(t, z) denotes the Stieltjes transform of the empirical spectral

measure of H(t). We denote the Stieltjes transform of the semicircle law by m. It

can be characterized as the unique holomorphic function m : C+ ! C+ such that

m2 +mz + 1 = 0 and m(z) ⇠ 1/z as |z| ! 1; see e.g. [16].

Lemma 4.22. Suppose that C�1M 6 N 6 CM . Fix " > 0. If for some B 6 N�"

we have

|s(0; z)�m(z)| � B +
1

(N⌘)1/4
(4.59)

uniformly for z = E + i⌘ with ⌘ > N�1+", then for any t 6 B we have

|s(t; z)�m(z)| � B +
1

(N⌘)1/4
.(4.60)

uniformly for z = E + i⌘ with ⌘ 2 [N�1+", 1].
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Proof. Define sfc,t(z) as the unique solution C+ ! C+ of the self-consistent equation

(4.61) sfc,t(z) =
1

M

M
X

i=1

1

e�t/2�i(0)� z � (1� e�t)sfc,t(z)
.

Thus, sfc,t(z) is the Stieltjes transform of the free convolution of the empirical eigen-

value distribution of e�t/2H(0) and the semicircle law rescaled by (1 � e�t)1/2. We

refer to [20] for the existence and uniqueness of sfc,t(z) and relative properties on the

free convolution with semicircle law.

As in (4.26), we find thatH(t)
d
= e�t/2H(0)+(1�e�t)1/2W , whereW is the standard

Gaussian measure on H(V ) with inner product (4.1). Under the assumptions of the

lemma, [63, Corollary 7.11] implies that for t 6 N�" we have

(4.62) |s(t; z)� sfc,t(z)| � 1

(N⌘)1/3

uniformly for z = E + i⌘ with ⌘ > N�1+". (Note that in [63], the Stieltjes transform

is denoted by mV instead of s, and that sfc,t is denoted mfc,t. Moreover, [63, Corol-

lary 7.11] is stated for a diagonal matrix H(0); however, since W is invariant under

orthogonal transformations which diagonalize H(0), the results of [63] trivially apply

to any symmetric matrix H(0).)

Set #t := 1� e�t 6 t. Note that the Stieltjes transform of the empirical eigenvalue

distribution of e�t/2H(0) is given by et/2s(0, et/2z), and that (4.61) can be rephrased

as

sfc,t(z) = et/2s(0, et/2(z + #tsfc,t(z))) .

For any z = E + i⌘ such that ⌘ > N�1+", we have Im et/2(z + #tsfc,t(z)) > Im et/2z >

N�1+", where we used that Im sfc,t(z) > 0. From the assumption (4.59) we therefore

get

sfc,t(z) = et/2m(et/2(z + #tsfc,t(z))) + O�

✓

B +
1

(N⌘)1/4

◆

.(4.63)
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Next, note that

m(z) = et/2m(et/2(z + #tm(z))) .(4.64)

(This may be interpreted as the fact that the semicircle law with variance t is a

semigroup with respect to free convolution.) Moreover, from the definition of m(z)

it is easy to deduce the continuity estimate

(4.65) |m(z)�m(w)| 6 2|z � w|1/2 ,

for any z, w 2 C+.

By (4.65), and using that t = O(1), the di↵erence between (4.63) and (4.64) is

|sfc,t(z)�m(z)| = et/2
�

�m(et/2(z + #tsfc,t(z)))�m(et/2(z + #tm(z)))
�

�+O�

✓

B +
1

(N⌘)1/4

◆

6 O(t1/2)
�

�sfc,t(z)�m(z)
�

�

1/2
+O�

✓

B +
1

(N⌘)1/4

◆

6 max

⇢

O(t1/2)
�

�sfc,t(z)�m(z)
�

�

1/2
,O�

✓

B +
1

(N⌘)1/4

◆�

.

Therefore either |sfc,t(z)�m(z)| = O(t) or |sfc,t(z)�m(z)| � B + (N⌘)�1/4, and we

get

(4.66) |sfc,t(z)�m(z)| � B +
1

(N⌘)1/4
+ t � B +

1

(N⌘)1/4
,

where we used t 6 B. Combining (4.62) and (4.66) and using ⌘ 6 1, the claim (4.60)

follows. ⇤

4.4. Proof of Propositions 4.6–4.7. With the preparations provided by Sections 4.2–

4.3, and using results of [19, 63, 52], we now complete the proofs of Propositions 4.6–

4.7. First, recall that ↵ > 0 is fixed, and that we always assume D > N↵. We also

use the notation z = E+i⌘ for the real and imaginary parts of the spectral parameter

z 2 C+.
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Throughout this section, H(t) denotes the constrained DBM from Definition 4.2

with H(0) given by (4.4). We use the notations of Section 4.3 applied to the con-

strained DBM. In particular,

M := N � 1

is the dimension of the space V := e

?.

4.4.1. A priori estimates on eigenvalues and eigenvectors. We begin by collecting

some results on the eigenvalues and eigenvectors of H(t)|e? required for the proofs of

Propositions 4.6–4.7.

For any H 2 M, we denote the eigenvalues of H|e? by �1(H) > · · · > �M(H), and

the corresponding normalized eigenvectors by v1(H), . . . ,vM(H). The components

of the eigenvectors in the standard basis on RN are denoted vk(H; i) := ei · vk(H),

i 2 [[1, N ]], k 2 [[1,M ]]. Moreover, for H 2 M, we denote by Gij(H; z) the entries

of the Green’s function of H restricted to e

? in the standard basis of RN , and by

s(H; z) the Stieltjes transform of the empirical spectral measure. Explicitly,

Gij(H; z) :=
M
X

k=1

vk(H; i)vk(H; j)

�k(H)� z
,(4.67)

s(H; z) :=
1

M
TrG(H; z) =

1

M

M
X

k=1

1

�k(H)� z
.(4.68)

Finally, we set

(4.69) �(H) ⌘ �(H; z) := max
i,j

|Gij(H; z)| _ 1 .

We also recall the definition of the typical location �i of the i-th eigenvalue from

(1.6).

The following proposition summarizes the input we need from the local semicircle

law of [19]. The local semicircle law, as proved in [19], only applies for t = 0, and the

extension to t > 0 is provided by the results of Section 4.3.
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Proposition 4.23. For any z 2 C+, i 2 [[1, N ]], k 2 [[1,M ]], and 0 6 t 6 D�1/4, we

have

(4.70) |vk(H(t); i)| � N�1/2 , �(H(t); z) � 1 +
1

N⌘
.

Moreover, for any fixed  > 0 and any i 2 [[N, (1� )N ]], we also have

(4.71) |�i(H(t))� �i| � D�1/4 .

Proof. First, as special cases of [19, Theorem 1.1 and Corollary 1.2], for any z = E+i⌘

with E 2 R and ⌘ > N�1+", for arbitrary " > 0, we have

(4.72) |s(H(0); z)�m(z)| � 1

D1/4
+

1

(N⌘)1/4
, |vk(H(0); i)| � N�1/2 .

(Note that the local semicircle law from [19] also includes the trivial eigenvalue at 0;

it is easy to see that its contribution to s is negligible compared to the error bounds

in (4.72).)

Next, we extend these bounds from t = 0 to t > 0. For i 2 [[1, N ]] define êi =

ei � (ei · e)e 2 e

?. Since vk(H(t); i) = êi · vk(H(t)), from (4.72) and Lemma 4.20,

applied to the constrained DBM with q = êi, we find |vk(H(t); i)| � N�1/2, for

any t > 0. Similarly, for t 6 D�1/4, the extension of the bound on the Stieltjes

transform follows immediately from Lemma 4.22 with B = D�1/4. Summarizing, for

any ⌘ > N�1+" and 0 6 t 6 D�1/4, we have

(4.73) |s(H(t); z)�m(z)| � 1

D1/4
+

1

(N⌘)1/4
, |vk(H(t); i)| � N�1/2 .

This proves the first estimate of (4.70).
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In order to prove the second estimate of (4.70), we use a dyadic decomposition (see

e.g. [45, (8.2)]) to obtain, for any matrix H 2 M,

|Gij(z)| 6
M
X

k=1

|vk(i)vk(j)|
|�k � E + i⌘| 6 4N max

k,l
|vk(l)|2

 

1 +

dlog2 ⌘�1e
X

n=0

Im s(E + i2n⌘)

!

.

We apply this estimate to the matrix H(t). By (4.73), we have maxk,l |vk(l)|2 �
1/N . Moreover, since ⌘ Im s(E + i⌘) is increasing in ⌘ (as may be easily seen from

the right-hand side of (4.68)), and since |m| 6 1, the first bound in (4.73) implies

Im s(z) � 1 + 1/(N⌘) for any ⌘ > 0, and thus Im s(E + i2n⌘) � 1 + 2�n/N⌘. For

⌘ > 1/NO(1) we then have log ⌘�1 � 1 and obtain �(z) � 1 as desired. For arbitrary

⌘ > 0 the claim then follows by [19, Lemma 2.1]. (In fact, we shall only need (4.70)

with ⌘ > 1/NO(1).)

Finally, we deduce (4.71) from the bound on the Stieltjes transform in (4.73). We

abbreviate �k ⌘ �k(H(t)), and denote by

⇢sc(I) :=

Z

I

⇢sc(x) dx , ⌫(I) :=
1

M

M
X

k=1

1(�k 2 I)

the semicircle and empirical spectral measures, respectively, applied to an interval I.

Then, following a standard application of the Hel↵er-Sjöstrand functional calculus

along the lines of [39, Section 8.1], we find from (4.73) and D 6 N that for any

interval I ✓ [�3, 3] we have

(4.74) |⌫(I)� ⇢sc(I)| � 1

D1/4
+

1

N1/4
� 1

D1/4
.

(We note that previously (4.74) for t = 0 was given in [19, Corollary 1.3].) Using

(4.74), we may estimate �i � �i as follows. By (4.74) applied to I = [�3, 3], we find

that there are at most O�(ND�1/4) eigenvalues outside [�3, 3]. Defining f(E) :=
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⇢sc([E,1)), we therefore find from (1.6) and (4.74) that

f(�i) =
i

N
= ⌫([�i,1)) +O

⇣ 1

N

⌘

= ⌫([�i, 3)) + O�

⇣ 1

D1/4

⌘

= ⇢sc([�i, 3)) + O�

⇣ 1

D1/4

⌘

= f(�i) + O�

⇣ 1

D1/4

⌘

.

Since i 2 [[N, (1� N)]], we have |f 0| > c > 0 in a neighbourhood of �i, and we

therefore get (4.71). This concludes the proof. ⇤

The next result shows that the suprema in (4.18) do not essentially change the size

of �.

Corollary 4.24. Fix n 2 N. For any z 2 C+ and 0 6 t 6 D�1/4, we have

(4.75) sup
✓2[0,1]n

sup
X2Xn

�
�

H(t) + (d� 1)�1/2 ✓ ·X; z
� � 1 +

1

N⌘
.

Moreover, for any i 2 [[1, N ]] and k 2 [[1,M ]], we have

(4.76) sup
✓2[0,1]n

sup
X2Xn

�

�vk
�

H(t) + (d� 1)�1/2 ✓ ·X; i
�

�

� � N�1/2 .

Proof. We abbreviate H ⌘ H(t). Without loss of generality, by an argument analo-

gous to [19, Lemma 2.1], we may assume that ⌘ > 1/N . Hence, by (4.70), we have

�(H; z) � 1. It therefore su�ces to show that if �(H; z) 6 (d� 1)1/2/(16n) then for

any ✓ 2 [0, 1]n and X 2 X n we have

(4.77) �
�

H + (d� 1)�1/2 ✓ ·X; z
�

6 2�(H; z) .
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To show (4.77), we use the resolvent identity to obtain (omitting the argument z for

brevity)

�

�Gij

�

H + (d� 1)�1/2✓ ·X���

=
�

�

�

Gij(H)� (d� 1)�1/2
⇣

G(H)(✓ ·X)G
�

H + (d� 1)�1/2 ✓ ·X�
⌘

ij

�

�

�

6 �(H) + 8n(d� 1)�1/2�(H)�
�

H + (d� 1)�1/2 ✓ ·X�

6 �(H) + �
�

H + (d� 1)�1/2 ✓ ·X�/2 .

Taking the maximum over i and j yields (4.77). Finally, (4.76) follows from (4.75),

as in the proof of [19, Corollary 1.2]. ⇤

Note that since Gij(H; z̄) = Gij(H; z), the estimates (4.70) and (4.75) for � also

hold with ⌘ < 0 if ⌘ is replaced by |⌘| on the right-hand sides. We shall use this

tacitly in the following.

4.4.2. Proof of Proposition 4.6: eigenvalue correlation functions. We now prove that

the locally averaged local correlation functions of the matrix H(0)|e? converge to

those of H(t)|e? for times t 6 N�1��D1/2. The main ingredient of the proof is

the following lemma comparing functions of Green’s functions with spectral param-

eter ⌘ slightly smaller than 1/N . Its proof follows easily from Proposition 4.8 and

Lemma 4.23. For random matrices with independent entries, analogous results were

previously proved by the Green’s function comparison theorem [45], and by direct

analysis of the evolution of the matrix entries under Dyson Brownian motion [24].

We also remark that, in [86], eigenvalues are compared directly without involving the

Green’s function.

Lemma 4.25. Fix n 2 N, and let , �, � > 0 be su�ciently small. Then the following

holds for any ⌘ 2 [N�1��, N�1], any sequence of positive integers k1, k2, . . . , kn, any

set of complex parameters zmj = Em
j ± i⌘, where j 2 [[1, km]], m 2 [[1, n]], |Em

j | 6 2�,
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and the ± signs are arbitrary. Let � 2 C1(Rn) be a test function such that for any

multi-index m = (m1, · · · ,mn) with 1 6 |m| 6 4 and for any ! > 0 su�ciently small,

max {|@m�(x)| : |x| 6 N!} 6 NO(!) ,(4.78)

max
�|@m�(x)| : |x| 6 N2

 

6 NO(1) .(4.79)

Then, with the notations G1(z) := G(H(0); z) and G2(z) := G(H(t); z), for any

t 6 D1/2N�1��, we have

(4.80)

�

�

�

�

�

E�

 

N�k1 Tr

 

k1
Y

j=1

G1(z
1
j )

!

, . . . , N�k
n Tr

 

k
n

Y

j=1

G1(z
n
j )

!!

� E�(G1 ! G2)

�

�

�

�

�

= O(N��/2+O(�)) .

Here, �(G1 ! G2) is the expression obtained from the one to its left by replacing

G1 with G2. The implicit constants depend on n, k1, . . . , kn, m1, . . . ,mn, and the

constants in (4.78)–(4.79).

Proof. For simplicity of notation, we show (4.80) only for n = 1 and k1 = 1; the

general case is analogous. We then write z instead of z11 . To show the claim, it then

su�ces to show that

�

�E�
�

N�1 TrG(H(t); z)
�� E�

�

N�1 TrG(H(0); z)
�

�

� = O
�

tD�1/2N1+�/2NO(�)
�

.

(4.81)

Set F (H) := �(N�1 TrG(H; z)). We claim that if r and n are fixed (arbitrarily,

independently of N), and if t 6 D�1/4, for any su�ciently large N (depending on

r, n, �), we have

(4.82) sup
06s6t

k@nFkr,s 6 N �/4+O(�) .

Given (4.82), Proposition 4.8 with " = �/4 yields (4.81).



187

Thus, it only remains to show (4.82). Recall that the derivative of the Green’s

function in the direction of a matrix X 2 X is given by @XG = �GXG (using that

elements in X act on e

?). Therefore, by the Leibniz rule, for any X1, . . . , Xn 2 X
and any H 2 M, we have

@X1 · · · @Xn

G = (�1)n
X

�2S
n

GX�(1)G · · ·GX�(n)G ,

where Sn is the set of permutations of n elements, and we omit the dependence on H

on both sides in our notation. Since (with respect to the standard basis of RN) each

X 2 X has at most 8 nonvanishing entries, and since these are in {±1}, by definition

of � it follows that

|N�1 Tr @X1 · · · @Xn

G| 6 N�1

N
X

i=1

n! max
�2S

n

�

�

�

GX�(1)G · · ·GX�(n)G
�

ii

�

� 6 8nn!�n+1 .

From this and the chain rule, we obtain that there exist constants Cn such that

(4.83) |@X1 · · · @Xn

�(N�1 TrG)| 6 Cn�
2n max

06m6n
|�(m)| .

By Corollary 4.24 and since |⌘| > N�1��, we have sup✓2[0,1]n supX2Xn

�(H(s) + (d�
1)�1/2✓ · X) � N�, for any 0 6 s 6 t. For n 6 4, by assumption (4.78) and (4.83)

therefore

(4.84) sup
✓2[0,1]n

sup
X2Xn

�

�@X1 · · · @Xn

�
�

N�1 TrG
�

H(s) + (d� 1)�1/2✓ ·X���� � NO(�) .

On the complement of the high-probability event of � in (4.84), we use the trivial

bound � 6 ⌘�1 6 N1+� and (4.79). We obtain

(4.85)

sup
✓2[0,1]n

sup
X2Xn

�

�@X1 · · · @Xn

�
�

N�1 TrG
�

H(s) + (d� 1)�1/2✓ ·X���� 6 Cn⌘
�2nNO(1) 6 NO(1) ,
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for any 0 6 s 6 t. By combining the estimates (4.84)–(4.85), for any constant

r = O(1), we have

(4.86) k@nFkr,s 6 N1/⇣+O(�) +N�⇣/r+O(1) 6 N �/4+O(�) ,

where ⇣ is as in Definition 4.19 and chosen su�ciently large, depending on r. This

concludes the proof. ⇤

The following lemma is essentially [45, Theorem 6.4]. It transforms the statement

about the Green’s function of Lemma 4.25 to a statement about the local correlation

functions.

Lemma 4.26. Consider two random matrix ensembles H1 and H2 with Green’s func-

tions G1(z) and G2(z). Suppose that, for all � and parameters as in the statement

of Lemma 4.25, the estimate (4.80) holds. Then the local bulk eigenvalue correlation

functions of H1 and H2 coincide.

Proof of Proposition 4.6: correlation functions. The proof follows directly by com-

bining Lemmas 4.25–4.26, with � given as in the assumption of Proposition 4.6. ⇤

4.4.3. Proof of Proposition 4.6: eigenvalue gap statistics. To prove that the eigen-

value gap statistics are stable for short times, we require a weak level repulsion

estimate. Such an estimate was derived in [52, Theorem 4.1] for sparse matrices with

independent entries, using a level repulsion estimate for t > N�1+c established in

[63]. Here we adapt the proof of [52, Theorem 4.1] to random regular graphs. The

nontrivial dependence is dealt with by Proposition 4.8.

If �i(H) is a simple eigenvalue of H|e? , we define

Qi(H) :=
1

N2

X

j:j 6=i,j6M

1

(�j(H)� �i(H))2
,(4.87)

and extend this definition by Qi(H) := 1 if �i(H) is not a simple eigenvalue. This

quantity plays an important role in [86], where it is observed that it captures the
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singularities of the derivatives of �i(H). In [52], it is found that Qi is stable under

DBM and can thus be used to show weak level repulsion from such an estimate for

larger times (when a Gaussian component is present).

Proposition 4.27 (Level repulsion). Fix  > 0. Then for any su�ciently small

⌧ > 0, any i 2 [[N, (1� )N ]], and any s > 0, we have

(4.88) P
�

Qi(H(s)) > N2⌧
�

= O(N�⌧/2) .

In particular,

(4.89) P
�

�i(H(s))� �i+1(H(s)) 6 N�1�⌧
�

= O(N�⌧/2) .

Proof. The proof is analogous to that of [52, Theorem 4.1], with H|e? instead of

H. We here focus on the di↵erences. These result from the replacement of [52,

Lemma 4.3] by Proposition 4.8, which takes into account the nontrivial correlation

structure of the random regular graph. As in [52], if �i(H) is a simple eigenvalue of

H|e? , we define the matrix

Ri(H) :=
X

j:j 6=i,j6M

1

�i(H)� �j(H)
vj(H)vj(H)⇤ =

1

2⇡i

I

|z��
i

(H)|=!

G(H; z)

�i(H)� z
dz ,

where ! is chosen such that the contour |z � �i(H)| = ! encloses only �i(H). Then

we have

Qi(H) =
1

N2
Tr(Ri(H)2) .

Given ⌧ > 0, define a cuto↵ function � satisfying the following two properties:

(1) � is smooth, and the first four derivatives are bounded, i.e. |�(k)(x)| = O(1),

for k = 1, 2, 3, 4; (2) On the interval [0, N2⌧ ], |�(x) � x| 6 1, and for x > N2⌧ ,

�(x) = N2⌧ . Then � � Qi extends to a smooth function on the space of symmetric

matrices.
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The proof of (4.88) consists of three steps. The first step is the estimate

E[�(Qi(H(s)))] = O(N3⌧/2) ,(4.90)

for s > t := N�1+c. This estimate follows from [63, Theorem 3.6], whose assumptions

are satisfied with high probability for the random d-regular graph by Proposition 4.23.

In particular, independence of the entries of H is not used.

In the second step, we derive the comparison estimate

�

�E[�(Qi(H(t)))]� E[�(Qi(H(s)))]
�

� 6 1 ,(4.91)

for s 2 [0, t]. Instead of using [52, Lemma 4.3], which requires that the entries

of the random matrix H(s) are independent, we use Proposition 4.8, which takes

into account the nontrivial correlation structure of the random regular graph. By

Proposition 4.8 with F (H) := �(Qi(H)), it su�ces to bound

k@nFkr,s = E

"

sup
✓2[0,1]n

sup
X2Xn

�

�@X1@X2 · · · @Xn

F
�

H(s) + (d� 1)�1/2 ✓ ·X���r
#1/r

,

(4.92)

for any (large) fixed integer r and n = 1, 2, 3, 4. To this end, the computation of

the proof of [52, Proposition 4.6] applies, by simply replacing the derivatives @(n)
ab by

@X1 · · · @Xn

with Xl 2 X . Here the formulas [52, (4.16)–(4.18)] remain valid after

replacing V by the Xl appropriately, and similarly the formula below [52, (4.18)]

remains valid after replacing Vij by v

⇤
i (H)Xlvj(H). Moreover, an analogous formula

holds for n = 4; see e.g. [79, p.8]. The same formulas are valid with H replaced by

H + (d� 1)�1/2 ✓ ·X. Since the Xl have only 8 nonvanishing entries (in the standard

basis on RN), and these are equal to ±1, Corollary 4.24 then implies

sup
✓2[0,1]n

sup
X2Xn

�

�

v

⇤
i

�

H(s) + (d� 1)�1/2 ✓ ·X�Xl vj

�

H(s) + (d� 1)�1/2 ✓ ·X��� � N�1
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for any s 2 [0, t]. As in the proof of [52, Proposition 4.6], we therefore get

sup
✓2[0,1]n

sup
X2Xn

�

�@X1@X2 · · · @Xn

F
�

H(s) + (d� 1)�1/2 ✓ ·X��� � N (n+2)⌧ .

From this, bounding (4.92) as in (4.86), we obtain

(4.93) k@nFkr,s 6 N c+(n+2)⌧ .

for arbitrarily small c > 0 and N large enough. Then (4.91) follows from Proposi-

tion 4.19 since O(tD�1/2N)N c+6⌧ 6 O(N�↵/2+2c+6⌧ ) 6 1 for t 6 N�1+c and D > N↵,

by chooosing c and ⌧ su�ciently small.

In the last step, we combine (4.90) and (4.91), and thus obtain

E[�(Qi(H(s)))] = O(N3⌧/2) ,

for any s > 0. Then (4.88) follows easily by Markov’s inequality and the definition

of �. ⇤

Proof of Proposition 4.6: gap statistics. Throughout the proof, we use the abbrevi-

ation �i(t) ⌘ �i(H(t)). Fix  > 0, � > 0, and t 6 N�1��D1/2. Since ⇢sc(�i) is

bounded above and below for i 2 [[N, (1� )N ]], it su�ces to prove (4.14) with

⇢sc(�i) replaced by 1. Moreover, for any n 2 N and � 2 C1(Rn) with bounded first

four derivatives, it su�ces to show the stronger claim

(4.94) E�
�

N�i(0), . . . , N�i+n(0)
�

= E�
�

N�i(t), . . . , N�i+n(t)
�

+ ø(1)

asN ! 1, uniformly in i 2 [[N, (1� )N ]]. For simplicity of notation, we only prove

(4.94) for n = 1; the general case is analogous and we comment on the di↵erences at

the end of the proof. Thus, for any i 2 [[N, (1� )N ]] and � 2 C1(R) with bounded

first four derivatives, we show

(4.95) E[�(N�i(0))]� E[�(N�i(t))] = ø(1) .
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Given a small constant ⌧ > 0, we choose a cuto↵ function ⇢ such that ⇢(x) = 1 for

x 6 N2⌧ and ⇢(x) = 0 for x > 2N2⌧ . Using (4.88), we can first remove a bad event

on which Qi is large:

|E[�(N�i(0))]� E[�(N�i(t))]|

6
�

�E[�(N�i(0))⇢(Qi(H(0)))]� E[�(N�i(t))⇢(Qi(H(t)))]
�

�

+ k�k1
�

P(Qi(H(0)) > N2⌧ ) + P(Qi(H(t)) > N2⌧ )
�

6
�

�E[�(N�i(0))⇢(Qi(H(0)))]� E[�(N�i(t))⇢(Qi(H(t)))]
�

�+O

✓k�k1
N ⌧/2

◆

.

To estimate the right-hand side, we apply Proposition 4.8 with F (H) := �(N�i(H))⇢(Qi(H)).

By an argument analogous to that used to obtain (4.93), for any r and n = 1, 2, 3, 4,

we find the bound

(4.96) k@nFkr,s 6 N c+O(⌧)

for arbitrarily small c > 0 (and N su�ciently large). More precisely, by the product

rule, the derivatives act either on �(N�i) or ⇢ � Qi. In the bound of any of these

derivatives, by definition of ⇢, we can assume that Qi 6 2N2⌧ . Then the derivatives

of ⇢ �Qi are bounded exactly as in the proof of Proposition 4.27. For the derivatives

of �(N�i), by the chain rule and since � is smooth, it su�ces to bound the derivatives

of the eigenvalues �i. This is again done similarly to the bounds on the derivatives

of Qi. Indeed, the derivatives of the eigenvalues can be expressed in terms of the

eigenvalues and eigenvectors as done in [52, (4.16)–(4.18)] (and with [79, p.8] for

n = 4). The latter expressions are bounded using the delocalization of eigenvectors

(4.70), and using that

X

j:j 6=i

1

|�i(s)� �j(s)| � NQ1/2
i (H(s)) ,

X

j:j 6=i

1

|�i(s)� �j(s)|k 6 NkQk/2
i (H(s)) ,

as in [52, (4.11)–(4.12)].
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As a consequence of Proposition 4.8 and (4.96), with t 6 N�1��D1/2, we finally

obtain

|E[�(N�i(0))⇢(Qi(H(0)))]� E[�(N�i(t))⇢(Qi(H(t)))]| = O(N c+O(⌧)��) ,

and (4.95) then follows by taking c and ⌧ small enough that c+O(⌧) < �.

In the general case of a test function �(N�i, . . . , N�i+n), we use the product of

cuto↵ functions (⇢ �Qi) · · · (⇢ �Qi+n) instead of ⇢ �Qi, and proceed otherwise analo-

gously. ⇤

4.4.4. Proof of Proposition 4.7.

Proof of Propositions 4.7. Given the estimates (4.70)–(4.71), the same argument as

in [52, Section 3] applies. ⇤

Appendix A. Combinatorial estimates for random regular graphs

A.1. Proof of Proposition 2.1.

Proof of (2.6). For ! = 1, a proof of the statement is given in [65, Lemma 2.1] or [21,

Lemma 7], for example. The more general statement follows from the same proof.

More precisely, in [65, (2.4)], it is shown that for any i 2 [[N ]], the excessXi in BR(i,G)
is stochastically dominated by a binomial random variable with n = d(d� 1)R trials

and success probability p = d(d� 1)R�1/N . It follows that

P(Xi > !) = O

✓✓

d(d� 1)R

! + 1

◆✓

d(d� 1)R�1

N

◆!+1◆

= O(N�!�1(d�1)2R(!+1)) = O(N�!�1+2(!+1)).

By a union bound, and using  < �/(2! + 2), therefore

P(Xi > ! for some i 2 [[N ]]) = O(N�!+2(!+1)) = ø(N�!+�),

as claimed. ⇤
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Proof of (2.7). The claim follows from [72, Theorem 4], for example. Indeed, if

BR(i,G) is not a tree, then some edge in BR(i,G) must lie on a cycle of length at

most k = 2R, and any edge that lies on such a cycle is in BR(j,G) for at most 2(d�1)R

vertices j 2 [[N ]]. Thus

(A.1) |{i 2 [[N ]] : BR(i,G) is not a tree}| 6 2(d� 1)RX = 2NX

where X is the number of edges in G which lie on cycles of length at most k. With

k = 2R and A > 2 in [72, Theorem 4], we obtain

(A.2) P(X = M) 6 (e5(A�1)A�5A)(d�1)k 6 e�c(d�1)k = e�cN2

if M = 20Ak(d � 1)k, where c is some universal constant. Let M0 = 40k(d � 1)k 6

80R(d� 1)2R 6 80RN2. By a union bound, then

(A.3) P(X > M0) 6 Ne�cN2 6 e�cN2/2.

Thus, with probability 1�e�cN2/2, and using  < �/(2!+2) 6 �/4, R = b logd�1 Nc ⌧
N, we have

(A.4) |{i 2 [[N ]] : BR(i,G) is not a tree}| 6 2NX 6 2NM0 6 160RN3 6 N �,

which is better than claimed. ⇤

A.2. Proof of Proposition 2.2.

Proof of (2.8). We fix vertices i, j and an integer k. Given a graph G, we denote

by tk(G) the total number of non-backtracking paths from i to j of length less than

distG(i, j) + k. We modify the graph G in the three steps such that, in each step, tk

does not decrease, and the excess remains the same. Then it su�ces to prove (2.8)

for the final graph.
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Step 1. Given an edge e = {x, y} 2 G that is not a self-loop and not on a geodesic

from i to j, we shrink the edge e to a point (remove e and identify its incident

vertices), and so obtain a new graph G 0. There is a bijection between the oriented

edges of the graph G \ {e} and those of the graph G 0.

Now we show that the total number of non-backtracking paths from i to j of length

less than distG(i, j) + k = distG0(i, j) + k in G 0 is at least tk. Let (~e1,~e2,~e3, . . . ) be

any non-backtracking path from i to j in the graph G that is not a geodesic. If some

~e� is (x, y) or (y, x), we remove it from the path and view the remaining part as a

path from i to j in the graph G 0. In this way we get a shorter path from i to j in

G 0. The new path is still non-backtracking, and we can recover the original path in G
from the new path in G 0 since x 6= y. Therefore the total number of non-backtracking

paths from i to j of length less than distG(i, j) + k = distG0(i, j) + k in G 0 is at least

tk.

We repeat this procedure with edges e (not on a geodesic) chosen arbitrarily as

long as possible. This creates a new graph G1 (which may depend on the choice of

edges in the steps) with vertex set G1. By construction, the edges in G1 are either

self-loops or on geodesics from i to j. Thus the vertex set of G1 decomposes into

G1 = V0 [ V1 [ · · · [ VdistG1 (i,j)
, where Vm := {v 2 G1 : distG1(i, v) = m},(A.5)

or equivalently, VdistG1 (i,j)�m := {v 2 G1 : distG1(v, j) = m}. In particular, V0 = {i}
and VdistG1 (i,j)

= {j}. Any edge in G1 is either a self-loop or has one vertex in Vm

and the other vertex in Vm+1, for some m 2 [[0, distG1(i, j)� 1]]. The excess of G1 is

!.

Step 2. Given two edges e = {vm, vm+1} and e0 = {vm, v0m+1} with vm 2 Vm and

vm+1 6= v0m+1 2 Vm+1, we remove the edge e0 and identify v0m+1 with vm+1, thus

creating a new graph G 0
1. Again there is a bijection between the oriented edges of the

graph G1 \ {e0} and those of the graph G 0
1.
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Now we show that the total number of non-backtracking paths from i to j of length

less than distG(i, j)+k = distG0
1
(i, j)+k in G 0

1 is at least tk. Let (~e1,~e2,~e3, . . . ) be any

non-backtracking path from i to j in the graph G1. If ~e� = (v0m+1, vm) and ~e�+1 6=
(vm, vm+1), we replace ~e� by (vm+1, vm); if ~e� = (v0m+1, vm) and ~e�+1 = (vm, vm+1), we

remove both ~e� and ~e�+1; if ~e� = (vm, v0m+1) and ~e��1 6= (vm+1, vm), we replace ~e� by

(vm, vm+1); if ~e� = (vm, v0m+1) and ~e��1 = (vm+1, vm), we remove both ~e� and ~e��1.

Then we view the remaining part as a path from i to j in the graph G 0
1, whose length

is at most as long as that of the original path. The new path is still non-backtracking,

we can recover the original path in G1 from the new path in G 0
1 since vm+1 6= v0m+1.

Therefore the total number of non-backtracking paths from i to j of length less than

distG(i, j) + k = distG0
1
(i, j) + k in G 0

1 is at least tk.

For any m 2 [[0, distG1(i, j)� 2]], if in the new graph |{v : distG1(i, v) = m+1}| > 2,

we can repeat the above process to reduce it by one. We repeat this procedure as

long as possible, choosing at every step edges e and e0 arbitrarily such that the

conditions are satisfied. Finally, we obtain a graph G2 (which again is not unique)

that has exactly distG2(i, j) + 1 vertices, {v0 = i, v1, v2, . . . , vdistG2 (i,j) = j}, such that

distG2(i, vm) = m for m 2 [[0, distG2(i,j)]]. The excess of G2 is !.

Step 3. In the final step, given any edge e from vm to vm+1, if it is the only edge from

vm to vm+1, we shrink it to a point. This preserves non-backtracking paths, and it

reduces the distance between i and j by one. By shrinking all edges of multiplicity

one, we obtain a graph G3. The number of non-backtracking paths from i to j of

length less than distG3(i, j) + k is at least tk, and the excess of G3 is !.

Final step. To bound the number of non-backtracking paths from i to j in G, it su�ces

to estimate the number of non-backtracking paths from i to j in the graph G3. Let

` = distG3(i, j), s be the total number of self-loops in G3, wm + 1 the multiplicity

of the edge {vm�1, vm}, for m 2 [[1, `]], and set w = max16m6` wm. Since G3 has

excess !, s +
P`

m=1 wm = !. The maximum degree of the graph G3 is bounded by
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2s+ 2w + 2. Now any non-backtracking path from i to j of length `+ k necessarily

contains the edges (v0, v1), (v1, v2), . . . , (v`�1, v`), and for each of them there are w1+

1, w2+2, . . . , w`+1 choices respectively. For other steps, there are at most 2s+1+2w

choices. The total number of such paths is bounded by

✓

`+ k

`

◆

(2s+ 1 + 2w)k
Ỳ

m=1

(wm + 1),(A.6)

under the condition s +
P`

m=1 wm = !. Note that (A.6) increases if we decrease s

by 1 and increase some wm in such a way that w increases by 1. Therefore (A.6)

achieves its maximum at s = 0. We denote

ak :=

✓

`+ k

`

◆

(1 + 2w)k
Ỳ

m=1

(wm + 1),

Since 1 + n 6 2n for any n 2 N0 and
P`

m=1 wm = !, we then have a0 6
Q`

m=1(wm +

1) 6 2!. For ak with k > 1, notice that ! =
P`

m=1 wm > w + (` � 1) so that

w 6 ! � (`� 1), and thus

ak 6
`+ k

k
(1 + 2w)ak�1 6 (`+ 1)(2! � 2`+ 3)ak�1 6

(2! + 5)2

8
ak�1 6 (2! � 1)ak�1,

given that ! > 6. Therefore

tk 6 a0 + a1 + · · ·+ ak�1 6 2!
�

1 + (2! � 1) + · · · (2! � 1)k�1
�

6 2!k.

This finishes the proof. ⇤

Proof of (2.9). Let H be the vertex set of H, !0 be the excess of the subgraph H,

and H̄ the subgraph induced by G on H. If distG(i, j) > `+ 1, then (2.8) implies

#{non-backtracking paths from i to j of length `+ k, not completely in H}

6 #{non-backtracking paths from i to j of length `+ k} 6 2!k,
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and the claim (2.9) follows. Therefore, in the following, assume that distG(i, j) 6 `,

and also that H,G are connected (otherwise, we can replace H by its connected

component containing i and j, and G by its connected component containing H).

For any non-backtracking path from i to j which is not completely contained in H,

let ~e be the first edge in the path which does not belong to H. There are three

possibilities for such edge e: (i) e 2 H̄. We denote the set of such edges by E1. (ii)

If we remove e from G, then G \ {e} breaks into two connected components. It is

necessary that the component not containing i, j contains cycles. We denote the set

of such edges by E2. (iii) e 62 H̄, and if we remove e from G, G \{e} is still connected.

We denote the set of such edges by E3.

We consider the graph G\{E1[E2[E3}, from G by removing edges E1[E2[E3. It

consists some many connected components, one corresponds to the graph H, others

are in one-to-one correspondence with the connected components of G \ H̄, the graph

from removing H from G. Notice from the definition of these edge sets E1, E2, E3,

each connected component of G \ H̄ contains exactly one edges in E2 or at least two

edges in E3. Therefore, G \ {E1 [ E2 [ E3} has at most 1 + |E2|+ |E3|/2 connected

components, where 1 represents the componentH. For the excess of G\{E1[E2[E3},
since its subgraph H has excess !0, and each new components, due to removing of

edges in E2, has excess at least 1, G \ {E1 [ E2 [ E3} has excess at least !0 + |E2|.

Claim A.1.

2|E1|+ |E2|+ |E3| 6 2(! � !0)(A.7)

Proof. To prove (A.7), for any finite graph X , set

�(X ) = #connected components(G0)� excess(G0).(A.8)

By the definition of excess, �(X ) = #vertices(G0)�#edges(G0), we have �(X \ e) =
�(X ) + 1 for any graph X and any edge e in X . Since the graph G is connected and
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has excess at most !, it follows that �(G) > 1� !. Thus if we remove E1 [ E2 [ E3

from G, the remaining graph has excess at least !0+ |E2| and at most 1+ |E2|+ |E3|/2
connected components. Therefore

1 + |E2|+ |E3|/2� |E2|� !0 > �(G \ (E1 [ E2 [ E3)) > 1� ! + |E1|+ |E2|+ |E3|,

and thus |E1|+ |E2|+ |E3|/2 6 ! � !0. (A.7) follows. ⇤

In the following we count the number of length `+ k non-backtracking paths from

i to j, containing ~e = (i1, j1) as the first edge not in H, i.e., {i1, j1} 2 E1 [ E2 [ E3.

Let distG(i, i1) = `1 and distG(j1, j) = `2. Since {i1, j1} is not in H, it is necessary

that `1 + `2 > `. Thus, ~e must be the `1 + 1, `1 + 2, . . . , or (`1 + k)-th step in the

path. The total number of such non-backtracking paths is bounded by

k
X

k1=1

#{non-backtracking paths from i to i1 of length `1 + k1 � 1, in H}

⇥#{non-backtracking paths from j1 to j of length `+ k � `1 � k1, in G}

6
k
X

k1=1

2!0k12!(k�k1+1) 6 2!(k+1)

k
X

k1=1

2(!0�!)k1 .

Since by (A.7), 2|E1|+ |E2|+ |E3| 6 2(! � !0), there are at most 2(! � !0) choices

for the oriented edge ~e, the total number of such non-backtracking paths is bounded

by

#{non-backtracking paths from i to j of length `+ k, not completely in H}

6 2(! � !0)2
!(k+1)

k
X

k1=1

2(!0�!)k1 6 2!(k+1)+1.

This completes the proof. ⇤

A.3. Proof of Lemma 3.35. To understand the distances distG̃(x, i) for all i 2 T`,

we need some more notations. A simple pruning[46, Definition 4.4] is the operation
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of removing one leaf and its incident edge from a graph. By repeating pruning on

the graph G̃0, we get a graph G̃2 with vertex set G̃2, such that it contains at most

two leave vertices: 1 and x.

Claim A.2.

|G̃2 \ Tk| 6 2! + 1, 0 6 k 6 `.(A.9)

Proof. For k = 0, (A.9) holds trivially, |G̃2\T0| = 1 6 2!+1. For k > 1, say G̃2\Tk =

{v1, v2, . . . , vm}. By our construction of G̃2, there are vertices v01, v
0
2, . . . , v

0
m 2 Tk�1

such that the edges {v01, v1}, {v02, v2}, . . . , {v0m, vm} 2 G̃2. For any i 2 [[1,m]], if we

remove the edge {v0i, vi} from G̃2, the graph G̃2 will either still be connected; or it will

break into two connected components, one contains vertex 1, and the other contains

vertex x or some cycles. Let m1,m2 the number of edges in the first case and second

case respectively. If we remove all edges {v01, v1}, {v02, v2}, . . . , {v0m, vm}, there will be

at most 1 +m1/2 +m2 connected components, and at least excess m2 � 1m2>0 left.

Notice that the graph G̃2 is connected and has excess at most !. Recall the function

� as in (A.8), we have

1 +m2 +m1/2� (m2 � 1m2>0) > �(G̃2 \ {{v01, v1}, . . . , {v0m, vm}}) > 1� ! +m1 +m2.

Therefore m1 +m2 6 2! + 1, and the claim follows. ⇤

With the above preparations, we can prove Lemma 3.35 as follows.

Proof of Lemma 3.35. Fix a geodesic P (viewed as a sequence of oriented edges) in

G̃0 from vertex x to vertex i 2 T`, there are three possibilities for its step (v0, v): (i)

the edge is downward, i.e. distG̃0
(1, v) = distG̃0

(1, v0) + 1; (ii) the edge is horizontal,

i.e. distG̃0
(1, v) = distG̃0

(1, v0), in this case v 2 G̃2; (iii) the edge is upward, i.e.

distG̃0
(1, v) = distG̃0

(1, v0)� 1, in this case v 2 G̃2. We denote (v0, v) the last step in

P , which is horizontal or upward. Then v 2 G̃2 and we say the vertex i is associated
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with the vertex v (which may not be unique). By our choice of (v0, v), the steps from

v to i in P are all downward, thus v 2 T. Moreover we have the estimate: for any

vertex i 2 T` associated with v

distG̃0
(x, i) >

�

�distG̃0
(1, x)� distG̃0

(1, v)
�

�+ distG̃0
(v, i)

=
�

�distG̃0
(1, x)� distG̃0

(1, v)
�

�+
�

�`� distG̃0
(1, v)

�

� .

Especially, if v 2 T`3 , i.e. v is distance `3 from vertex 1, the above relation simplifies

to

distG̃0
(x, i) > |`1 � `3|+ (`� `3),

and by noticing q < 1, we have

qdistG̃0 (x,i) 6

8

<

:

q`+`1�2`3 , if `3 6 `1,

q`�`1 , if `3 > `1.
(A.10)

In this way, each vertex i 2 T` is associated with some vertex v 2 G̃2. If v 2 G̃2\T`3 ,

the total number of vertices in T` associated with v is at most (d� 1)`�`3 , since they

are all distance `�`3 away from v. The total number of vertices i 2 T` associated with

some v 2 G̃2\{T`1[T`1+1 · · ·[T`} is bounded by (2!+1)(1+(d�1)+· · ·+(d�1)`1) 6

2(! + 1)(d� 1)`1 , provided that d > 2! + 3. Notice that we have the decomposition

{qdistG̃0 (x,i) : i 2 T`} = [`32[[0,`1�1]]{qdistG̃0 (x,i) : i 2 T`, i is associated with some v 2 G̃2 \ T`3}

[{qdistG̃0 (x,i) : i 2 T`, i is associated with some v 2 G̃2 \ {T`1 [ T`1+1 · · · [ T`}}.

Lemma 3.35 follows by combining with (A.10) and (A.9). ⇤

Appendix B. Properties of the Green’s functions

Throughout this paper, we repeatedly use some (well-known) identities for Green’s

functions, which we collect in this appendix.
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B.1. Resolvent identity. The following well-known identity is referred as resolvent

identity: for two invertible matrices A and B of the same size, we have

(B.1) A�1 � B�1 = A�1(B � A)B�1 = B�1(B � A)A�1.

B.2. Schur complement formula. Given an N ⇥ N matrix M and an index set

T ⇢ [[N ]], recall that we denote by M |T the T⇥ T-matrix obtained by restricting M

to T, and that by M (T) = M |[[N ]]\T we denote the matrix obtained by removing the

rows and columns with indices in T. Thus, for any T ⇢ [[N ]], any symmetric matrix

H can be written (up to rearrangement of indices) in the block form

(B.2) H =

2

4

A B0

B D

3

5 ,

with A = H|T and D = H(T). The Schur complement formula asserts that, for any

z 2 C+,

(B.3)

G = (H�z)�1 =

2

4

(A� B0G(T)B)�1 �(A� B0G(T)B)�1B0G(T)

�G(T)B(A� B0G(T)B)�1 G(T) +G(T)B(A� B0G(T)B)�1B0G(T)

3

5 ,

where G(T) = (D � z)�1. Throughout the paper, we often use the following special

cases of (B.3):

G|T = (A� B0G(T)B)�1,

G|Tc �G(T) = G|TcT(G|T)�1G|TTc ,

G|TTc = �G|TB0G(T),

(B.4)

as well as the special case

(B.5) G(k)
ij = Gij � GikGkj

Gkk
.
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B.3. Ward identity. For any symmetric N ⇥ N matrix H, its Green’s function

G(z) = (H � z)�1 satisfies the Ward identity

(B.6)
N
X

j=1

|Gij(z)|2 = ImGjj(z)

⌘
,

where ⌘ = Im[z]. This identity follows from (B.1) with A = H�z and B = (H�z)⇤.

In particular, (B.6) provides a bound for the sum
PN

j=1 |Gij(z)|2 in terms of the

diagonal of the Green’s function. For an explanation why this algebraic identity has

the interpretation of a Ward, see e.g. [83, p.147].

B.4. Covering map. For any vertex i, the vector (Gi1, Gi2, Gi3, . . . ) 2 `2([[N ]]) is

uniquely determined by the following relations:

1 + zGii =
1p
d� 1

X

k:i⇠k

Gik

zGij =
1p
d� 1

X

k:j⇠k

Gik

(B.7)

where l ⇠ k denotes that l and k are adjacent in G, i.e., that Akl = 1.

Lemma B.1. Given a covering ⇡ : G̃ ! G of graphs, denote the Green’s function of

G̃ by G̃ and that of G by G. Then for all vertices i, j in G, the Green’s functions obey

Gij =
X

y:⇡(y)=j

G̃xy.(B.8)

Proof of (B.8). We give the proof for simple graphs G, G̃. (The statement also holds

for graphs with self-loops and multiple edges if
P

k:i⇠k is interpreted as the sum of

all the oriented edges (i, k); especially, a self-loop should be counted twice.) Clearly,

G̃ satisfies the relations (B.7) with G replaced by G̃. For any fixed x 2 G̃ such that

⇡(x) = i, we can define:

Gij =
X

y:⇡(y)=j

G̃xy,(B.9)
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if the right-hand side is summable. Assuming that for any j the right-hand side of

(B.9) is well defined, we verify that (Gij)j satisfies the relation (B.7), and thus that

it gives the Green’s function of H. Indeed,

1 + zGii = 1 + z
X

y:⇡(y)=i

G̃xy = 1 + zG̃xx + z
X

y:⇡(y)=i,y 6=x

G̃xy

=
1p
d� 1

X

w:w⇠x

G̃xw +
1p
d� 1

X

y:⇡(y)=i,y 6=x

X

w:w⇠y

G̃xw =
1p
d� 1

X

y:⇡(y)=i

X

w:w⇠y

G̃xw.

Since there is no self-loop and multi-edge in our graph G, for any y1 6= y2 with

⇡(y1) = ⇡(y2) = i and w1 ⇠ y1 and w2 ⇠ y2, it is necessary that w1 6= w2. Therefore:

1p
d� 1

X

y:⇡(y)=i

X

w:w⇠y

G̃xw =
1p
d� 1

X

k:i⇠k

X

w:⇡(w)=k

G̃xw =
1p
d� 1

X

k:i⇠k

Gik.

Similarly, for the second relation (B.7),

zGij = z
X

y:⇡(y)=j

G̃xy =
1p
d� 1

X

y:⇡(y)=j

X

w:w⇠y

G̃xw =
1p
d� 1

X

k:j⇠k

X

w:⇡(w)=k

G̃xw =
1p
d� 1

X

k:j⇠k

Gik,

as needed. ⇤
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[37] L. Erdős, A. Knowles, and H.-T. Yau. Averaging fluctuations in resolvents of random band
matrices. Ann. Henri Poincaré, 14(8):1837–1926, 2013.
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