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abstract

Nucleation is a key step in the synthesis of crystalline materials, whether from the
melt or from solution. Despite the importance of these early-stage nucleation pro-
cesses, a detailed atomic-level understanding is often lacking due to the difficulties
in probing the nuclei at the associated length- and time-scales. In this thesis, we
propose two approaches to model the nucleation in atomic-level. We first introduce
a hybrid grand canonical Monte Carlo/molecular dynamics (GCMC/MD) method
for simulating the nucleation of weak electrolytes in explicit solvent. The approach
is capable of efficiently simulating the nucleation of dilute solutions while including
the atomistic influence of the surrounding solvent, and provides access to the full
nucleation free energy surface and associated nucleation free energy barrier. After
validating the method against a simple model system, we applied the approach to
the nucleation of a low-solubility rock-salt structure in liquid water. We find that
the calculated nucleation barriers, in conjunction with analytic rate theories, yields
predicted nucleation rates that are in excellent agreement with brute-force MD
simulations of the supersaturated solution. To further improve the efficiency and
parallelism, we have developed a second simulation approach based on the graph
structure of the nucleus. This approach models the nucleation for each individual
cluster structure and averages the results according to their Boltzmann distribution,
thus avoids complete structural sampling in one single simulation. The graph-based
method was validated against lattice model and later tested for the low-solubility
rock-salt system, which yields similar results with our hybrid GCMC/MD approach.
We anticipate possible applications of above approaches to a wide variety of related
weak electrolytes, including CaCO3, zeolites, and metal-organic frameworks.
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1 introduction

Nucleation is defined as the initial step during most first-order phase transitions
such as crystallization, condensation, or melting. It represents the emergence of a
new thermodynamic phase driven by local fluctuation at an atomistic level. Among
all types of nucleation, the solution-phase crystallization has attracted particular at-
tention as it often plays a decisive role in nanomaterial synthesis, biomineralization
and pharmaceutical formulation[40, 44, 12]. The resulting nucleus often controls
the structure of the growing crystal and the final crystalline product from a poten-
tially diverse set of possible polymorphs, each with distinct properties. Despite the
importance of these early-stage nucleation processes, a detailed atomic-level under-
standing is often lacking due to the difficulties in probing the nuclei at the associated
length- and time-scales; this challenge is particularly pronounced for complex nano-
materials and nanoporous materials such as zeolites and metal-organic frameworks
(MOFs)[40]. Nucleation may occur via a variety of mechanisms including classi-
cal nucleation theory (CNT) or multi-step pathways, depending on the choice of
solvent(s), temperature, supersaturation, or myriad other parameters.[12]

1.1 Nucleation Theories
CNT is the simplest while most widely used theory in describing the nucleation
process. Despite its simplicity, it provides a fundamental understanding of nu-
cleation and gives reasonable predictions for nucleation rates. CNT originated
from the work of Volmer and Weber[42], Becker and Döring[5], and Frenkel[15].
The theory considers the nucleation under supersaturation as a process driven by
two competing factors: the spontaneous tendency of a supersaturated solution
to undergo phase transformation and the formation of energetically unfavorable
interface. These two factors lead to a size-dependent nucleation free energy, which
is expressed as

∆G = 4πr2γ −
4
3πr

3∆µ, (1.1)



2

Figure 1.1: Schematic representation showing the dependence of nucleation free
energy ∆G on the radius r according to classical nucleation theory. Free energy
barrier and critical nucleus size are denoted as ∆G∗ and r∗. Reprinted from ref [22]

where r is the size of the nucleus, γ is the positive free energy contribution arising
from the formation of interface and ∆µ is the negative chemical potential change
per unit volume when transforming the solutes into crystalline phase. The positive
interface term indicates the nucleation predicted by CNT is an activated process
whose kinetics is determined by nucleation free energy barrier∆G∗. And the cluster
size corresponding to this barrier is so called "critical nucleus size" r∗. With the free
energy barrier, the nucleation rate can be expressed in the form of the Arrhenius
reaction rate equation as:

J = Aexp

[
−
∆G∗

kbT

]
(1.2)

where kb is the Boltzmann constant and T is the temperature. The pre-exponential
factor A is determined from kinetic considerations.

One of the simplifying assumptions made in CNT is that the nucleus directly
transforms to the thermodynamically most stable phase, without going through
any intermediate state. However, when polymorphism is expected for a system,
the early-statge nucleation may proceed through a metastable state. Multiple exper-
iments have revealed the disordered transient precursor phases during the process
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Figure 1.2: Alternative pathways leading from solution to solid crystal: (a) super-
saturated solution; (b) ordered subcritical cluster of solute molecules, proposed
by classical nucleation theory; (c) liquid-like cluster of solute molecules, dense
precursor proposed by two-step nucleation theory; (d) ordered crystalline nuclei;
(e) solid crystal. Reprinted from ref [12]

of biomineralization[44] and protein crystallization[45, 17]. Such nucleations are
often described as multi-step pathways which form one or more amorphous or
alternative crystalline intermediates before reaching a thermodynamically stable
phase. The emergence of metastable intermediates usually generates a lower free
energy barrier and possibly lead to a barrierless nucleation. Without considering the
intermediate state, CNT fails to make quantitative predictions for such nucleations.

Instead, a nonclassical multiple-step mechanism (two-step mechanism in most
cases)[41] was developed for those systems. It assumes the nucleation proceeds in
two (multiple) steps: the formation of a droplet of a dense liquid induced by phase
separation followed by the formation of a crystalline nucleus inside the droplet
due to the structural ordering. When the sum of the free energy barriers from two
(multiple) steps is lower than the one predicted by CNT, this two (multiple)-step
mechanism is preferred.

Even for a simple crystal system, nucleation path may change significantly
depending on a variety of conditions. To determine the underneath mechanism
and better control the nucleation behavior, an atomistic-level understanding is
required.
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1.2 Nucleation of MOFs
MOFs are a class of nanoporous materials built of inorganic nodes (metal cations or
oxide) bridged by organic linkers. With this general motif, hundreds of thousands[30]
of MOF materials can be designed, which opens up the exciting possibility of gener-
ating tailored MOF materials for a wide range of applications via a rational "crystal
engineering" approach[33]. The "crystal engineer" often requires significant in-
sights into the fundamental processes governing MOF nucleation and growth, as
well as the relationship between reaction parameters (choice of solvent(s), time,
temperature, etc.) and synthetic outcome. Unfortunately, due to the lack of under-
standing for the underlying MOF nucleation mechanism(s), the above relationship
is hard to predict. And the successful MOF synthesis is usually based on trial and
error, chemical intuition, and/or large-scale screenings, rather than by rational
design.[14, 35]

To enable targeted MOF synthesis without expensive experimental screenings,
fundamental insights into MOF nucleation with atomistic details are needed, es-
pecially in the early-stage nucleation which is extremely challenging to explore in
experiment due to the required spatial and temporal resolution.[3] For this reason,
corresponding computational studies (i.e., molecular simulation) are necessary to
offer a window into this process, and this has been a long-term goal of our research
group.

Although molecular simulation provides a direct way to extract atomistic in-
formation during the nucleation, it also faces many challenges. The choice of
solvent(s) usually plays a decisive role in determining the synthetic outcome, and
potentially directs the crystallization via templating. Therefore simulation with
explicit solvents is necessary for understanding the MOF nucleation. But explicitly
including solvent molecules significantly increase the computing cost, especially for
low-solubility materials under modest supersaturation. In addition, due to the com-
plicated porous structure and the potential free energy barriers, the nucleation also
suffers from ineffective sampling associated with polymorphism and rare events.
Fortunately, all the above obstacles are also presented in the nucleation of weak
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electrolytes, and we hope through the study of solution-phase weak electrolyte
nucleation in this dissertation, we can provide efficient simulation strategies for
understanding the early-stage MOF crystallization.

1.3 Molecular Modeling in Nucleation
Molecular simulation can probe the details of the nucleation process, including
at its earliest stages, with atomistic resolution. Both molecular dynamics (MD)
and Monte Carlo (MC) methods have been employed previously to understand
nucleation[34]. For example, leveraging large-scale brute-force MD simulation,
Patey and Chakraborty[10, 9] were able to predict the mechanism of NaCl nucle-
ation at a high concentration. However, brute-force MD cannot easily be applied to
sparingly soluble materials (e.g., weak electrolytes and other common nanoporous
materials, such as zeolites or MOFs). In such cases, the saturated solution contains
only an extremely low concentration of solutes. As such, the MD simulation would
require both immense system sizes (to allow for sufficient solutes for even a modest
sized nucleus) and simulation times (to allow for diffusive transport to the nucleus
surface). In addition, outside of extreme supersaturation, nucleation is a highly
activated process that cannot be effectively sampled by unbiased MD.

Biased/accelerated MD methods such as umbrella sampling[36, 37, 25] or
metadynamics[27, 26, 4] can be used to circumvent the nucleation free energy
barrier and thus are excellent candidates for the examination of nucleation of con-
centrated solutions. For example, umbrella sampling has been employed to study
the nucleation of ice[29] and molten NaCl[39], while metadynamics was utilized
to study the nucleation of an LJ liquid[38] and both aqueous urea[31] and NaCl
solutions[16]. These methods rely upon the appropriate selection of order pa-
rameter(s) or collective variable(s), and the applied bias dictates that no direct
dynamical information can be extracted.[34]

Path-sampling methods provide an alternative approach that does not require a
priori selection of a collective variable. Transition path sampling[11, 6] was used
by Zahn[46] to study nucleation of NaCl solution. Later, Panagiotopoulos and
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co-workers[18] employed forward flux sampling[1, 2] to calculate the nucleation
rate for the same system. Transition interface sampling[13, 28, 20] was also used
by Jungblut[19] to obtain the rate of LJ nucleation.

Alternatively, "seeding" methods have also been employed to help circumvent
the nucleation barriers and obtain a critical cluster size.[32, 8, 7, 21] However, the use
of a pre-existing seed implies that it is impossible to calculate absolute nucleation
barriers/rates or the details of early stage of nucleation. Further, neither biasing,
path-sampling, nor seeding methods can easily be extended to weak electrolytes
since they do not directly address the associated length- and time-scale challenges
imposed by these dilute solutions.

To address those challenges, a "grafting" method was developed by Zahn and co-
workers[23, 24] and utilized to simulate nucleation and growth of NaCl and CaF2.
In this approach, solvent is first removed, and a single ion is manually attached to an
energetically-favored position on the cluster surface. The solvent is then returned,
followed by energy relaxation. By iterating this procedure, a stable cluster is gen-
erated. Unfortunately, this Monte Carlo-like procedure is not reversible and thus
violates detailed balance. Thus, although this scheme may generate a "representa-
tive" nucleus, it cannot (generally) be used to provide thermodynamic/kinetic data
or associated nucleation barriers. (Note that it may be possible to assign approxi-
mate free energies to the generated clusters using a "two-phase" thermodynamic
model, as has been done in simulations of calcium carbonate nucleation.[43])

In summary, the above simulation techniques either fail to address the length-
and time-scale challenges imposed by dilute solutions, or violate detailed balance
when estimating the free energy. In this dissertation, we present two methodologies
developed from our group to model the nucleation of weak electrolytes, which
successfully address the above challenges in crystal nucleation. Chapter 2 describes
a hybrid grand canonical Monte Carlo/molecular dynamics (GCMC/MD) method
and validates the method against simple Lennard-Jones (LJ) model. In Chapter 3,
this method is applied to a a low-solubility rock-salt structure in liquid water, and
the predicted nucleation rate is compared with the rate generated from brute-force
MD simulations. To further improve the efficiency and parallelism, in Chapter
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4, we develop a second simulation approach based on the graph structure of the
nucleus. It is first validated against lattice model. Later we generalize this approach
to nonequilibrium simulations and extend its application to atomistic systems.
Overall conclusions and avenues for future research are the subject of Chapter 5.
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2 modeling nucleation via hybrid gcmc/md
simulation

2.1 Introduction
Obtaining thermodynamic data on nucleation processes requires sampling over the
nucleate cluster size and configurations in accord with the associated Boltzmann
factor. Frenkel and co-workers proposed a straightforward approach to accomplish
this sampling using grand canonical Monte Carlo (GCMC) in conjunction with a
cluster size distribution theory.[72] Chen et al. later applied this GCMC technique
to the nucleation of Lennard-Jones system.[52, 49] Wu and Deem[73] also employed
this method to obtain the nucleation free energy surface of zeolite. In the latter case,
the authors utilized a continuum dielectric to account for the role of the surrounding
solvent but did not include the influence of explicit solvent. Such solvent can play an
important role not only in solvating/stabilizing the surface of the growing nucleus,
but also in templating the growth of the structure, especially during the synthesis
of porous structures.[53, 54] The same approach was later applied to a calcium
carbonate solution,[60] using a dielectric continuum to represent the influence of
the surrounding solvent and yielding thermodynamic properties (e.g., equilibrium
constants) in agreement with experiment and consistent with classical nucleation
theory.

Building on this prior work, in this chapter we present a methodology to
model the nucleation of weak electrolytes (such as sparingly soluble salts) in
the presence of explicit solvent. We use a combination of sampling and biasing
approaches (hybrid GCMC/MD, aggregation-volume-bias,[50, 51, 52] expanded
ensemble[64, 56, 57]) to circumvent the challenges of dilute systems, mass trans-
port, and nucleation barriers. We first benchmark and verify the methodology
against a simple Lennard-Jones model system, and then apply it to the nucleation
of a low-solubility rock-salt structure.[48] In the latter case (Chapter 3), we validate
the approach by comparing the calculated nucleation rate against that observed via
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large-scale brute-force MD and find excellent agreement.

2.2 Theory

2.2.1 Cluster Size Distribution

Our methodology is based on the cluster size distribution theory which relates the
nucleation free energy with the distribution of cluster sizes. It was first proposed
by ten Wolde and Frenkel[72] and we present the derivation here with minor
adaptions.

For a grand canonical system at temperature T , volume V and chemical potential
µ, the partition function is written as

Ξ(µ,V , T) ≡
∞∑
N=0

exp(βµN)Q(N,V , T) (2.1)

Here, N is the number of particles in the system and Q is the canonical ensemble
partition function for a system of size N:

Q(N,V , T) = 1
Λ3NN!

∫
drNexp[−βU(rN)], (2.2)

where U is the potential energy of the system, β ≡ 1/kbT is the reciprocal tempera-
ture, kb is Boltzmann constant and Λ is the thermal de Broglie wavelength of the
particle.

For simplicity, we only consider the vapor-liquid nucleation here. The same
derivation and conclusion can be extended to the solution-phase nucleation. As-
suming a cluster criterion to define liquid clusters, the partition function of this
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system can be expressed as

Ξ(µ,V , T) =
∞∑
Nl

exp(βµNl)

∞∑
Nv

exp(βµNv)
1

Λl
3NlNl!

1
Λv

3NvNv!

×
∫
drNv

∫
drNlW (rNv ; rNl)× exp[−βU(rNv ; rNl)]

(2.3)

In the above expression, subscription l denotes the particle in liquid state and v
denotes the particle in vapor state. W (rNv ; rNl) is a weight function. It takes value
of one if Nl number of particles in liquid state and zero otherwise. It is important
to be noticed here, the general weight function W consists of single-cluster weight
functions. Here, we use n to represent the size of each single cluster and the total
number of clusters of size n is denoted as Nn. We also index the cluster of size n
by jn = 1, 2 · · ·Nn. Then, the weight function W can be expressed as:

WNl =
∑∏

n

Nn∏
jn=1

wjn(r
n), (2.4)

where each wjn represents the weight function for cluster jn. It equals one if the
cluster satisfies the cluster criterion and zero otherwise.

∑
represents all cluster

distributions of Nl liquid-like particles. With these definitions, we can rewrite the
partition function in terms of each single cluster:

Ξ(µ,V , T) =
∞∑
N1=0

∞∑
N2=0

· · ·
∞∑

Nnmax=0

1
N1!N2!· · ·Nnmax !

nmax∏
n=1

(exp(βµn)n3/[Λ3nn!])Nn

×
∞∑

Nv=0

exp(βµNv)
1

Λv
3NvNv!

∏
n

[∫
dr ′

n−1
]Nn

×
∫ nmax∏
n=1

Nn∏
jn=1

dRjnwjn(Rjn , r ′n−1; rNv)exp[−βU(R; rNv)].

(2.5)

Here, the entire partition function is represented by partition functions of individual
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clusters. For each cluster, the cartesian coordinates are transformed into center-
of-mass coordinates. Rjn is the center-of-mass for cluster jn and r ′s are positions
after transformation. The term n3 is the Jacobian determinant from coordinate
transformation. In the above expression, we also introduce an artificial parameter
nmax, which defines the maximum size of the cluster.

For a specific configuration of clusters, a potential of mean force W(rNl ;µ) can
be defined by considering all vapor configurations:

exp[−βW(rNl ;µ)] ≡
∞∑

Nv=0

exp(βµNv)
1

Λ3NvNv!
×
∫
drNv

nmax∏
n=1

Nn∏
jn=1

wjn(Rjn , r ′n−1; rNv)

× exp[−βU(rNl ; rNv)].
(2.6)

The potential of mean force takes the average of interactions from vapor-like par-
ticles. In the case of solution, this potential of mean force can also be defined by
averaging over degrees of freedom of solvent molecules. With the definition of the
potential of mean force, the partition function can be written as

Ξ(µ,V , T) =
∞∑
N1=0

∞∑
N2=0

· · ·
∞∑

Nnmax=0

1
N1!N2!· · ·Nnmax !

nmax∏
n=1

(exp(βµn)n3/[Λ3nn!])Nn

×
nmax∏
n=1

[∫
dr ′

n−1
]Nn ∫ nmax∏

n=1

Nn∏
jn=1

dRjnexp[−βW(rNl ;µ)].

(2.7)

The potential of mean forceW(rNl ;µ) consists of intercluster interactions and
intracluster interactions. Assuming the intercluster interaction is pair-wise additive
and only depends on positions of the center-of-mass of the clusters (which is valid
for dilute systems that are being considered in this dissertation), W(rNl ;µ) can be
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written as:

W(rNl ;µ) =W0 +
∑
n

Nn∑
jn=1

Wn(r
n,jn ;µ) + 1

2
∑
n,n ′

∑
jn,jn ′

Wn,n ′(Rn,jn ,Rn ′,jn ′ ;µ). (2.8)

Where W0 is the potential of mean force without clusters, Wn represents the intra-
cluster interaction for each cluster andWn,n ′ is the pair-wise intercluster interaction.
With this assumption, the partition function can be further expanded as:

Ξ(µ,V , T) =exp(−βW0)

∞∑
N1=0

∞∑
N2=0

· · ·
∞∑

Nnmax=0

1
N1!N2!· · ·Nnmax !

nmax∏
n=1

(exp(βµn)n3/[Λ3nn!])Nn

×
nmax∏
n=1

[∫
dr ′

n−1
exp[−βWn(r

′n−1;µ)]
]Nn

×
∫ nmax∏
n=1

Nn∏
jn=1

dRjnexp[−βWn,n ′(Rn,jn ,Rn ′,jn ′ ;µ)].

(2.9)

For a system like LJ vapor or solution of weak electrolytes, it is safe to make a
further approximation to ignore the intercluster interactions because of the low
density of clusters. And Eq. 2.9 can be simplified as:

Ξ(µ,V , T) =exp(−βW0)

∞∑
N1,N2,··· ,=0

∏
n

[exp(βµnNn]

×
∏
n

1
Nn!

[
Vn3

Λ3nn!

∫
dr ′

n−1
exp[−βWn(r

′n−1;µ)]
]Nn

.
(2.10)

In the above equation, the term inside the last bracket is in fact the partition function
for a single cluster of size n:

Zn =
Vn3

Λ3nn!

∫
dr ′

n−1
exp[−βWn(r

′n−1;µ)]. (2.11)
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And the entire partition function can be simplified as:

Ξ(µ,V , T) = exp(−βW0)

∞∑
N1,N2,··· ,=0

∏
n

[exp(βµn)Zn]
Nn

Nn!

= exp(−βW0)
∏
n

∞∑
Nn=0

[exp(βµn)Zn]
Nn

Nn!

= exp(−βW0)
∏
n

exp(exp[βµn]Zn)

= exp(−βW0)exp(
∑
n

exp[βµn]Zn).

(2.12)

Now consider the density of clusters of size n ′,

〈Nn ′〉 =
1

Ξ(µ,V , T)exp(−βW0)

∞∑
Nn ′=0

Nn ′
[exp(βµn ′)Zn ′]

Nn ′

Nn ′!
∏
n 6=n ′

∞∑
Nn=0

[exp(βµn)Zn]
Nn

Nn!

=

∑∞
Nn ′=0Nn ′

[exp(βµn ′)Zn ′ ]
N
n ′

Nn ′ !∑∞
Nn ′=0

[exp(βµn ′)Zn ′ ]
N
n ′

Nn ′ !

.

(2.13)

Since ex =
∑
n
xn

n! and xex =
∑
n n

xn

n! , 〈Nn ′〉 can be simplified as:

〈Nn〉 = Znexp[βµn] (2.14)

Here we replace n’ by n. The left-hand side of Eq. 2.14 is the cluster size distribution
and the right-hand side is the partition function for the cluster. If we define the free
energy of nucleus at size n as

Fn ≡ kbT lnZn, (2.15)

Eq. 2.14 can be rewritten as

〈Nn〉 = exp [−β (Fn − nµ)] = exp(−β∆F). (2.16)
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The same derivation can be applied to isothermal–isobaric system and Helmholtz
free energy change ∆F can be replaced by Gibbs free energy change ∆G.

2.2.2 Grand Canonical Monte Carlo Cluster Sampling

In conjunction with the assumption that cluster-cluster interactions are negligible
(appropriate for dilute solutions, such as saturated weak electrolytes), the previous
section established the relation between cluster size distribution and nucleation
free energy as

Pn =
〈Nn〉
N

= exp[−β∆Gn] (2.17)

Here, Pn is probability of observing a cluster of size n,Nn is the number of clusters
of size n,N is the total number of particles in the system and ∆Gn is the Gibbs free
energy of cluster of size n (where the reference state is the homogeneous phase).
(Note that the neglect of cluster-cluster interactions also implicitly involves the
neglect of solute-cluster interactions, as an isolated solute is a merely a cluster of size
1. Nonetheless, these interactions are very modest for sparingly soluble solutes.)
Sampling the nucleation free energy barrier is thus equivalent to measuring the
cluster size distribution. We utilize a grand canonical Monte Carlo (GCMC)-based
approach to sample the distribution of cluster sizes and configurations within
the nucleating system. Such an approach requires a definition of a "cluster" to
distinguish between agglomerated particles and those in free solution. We utilize
Stillinger’s[66] cluster criterion, whereby any two solutes within a certain cutoff
distance are considered belong to a cluster.

For dilute solutions, the cluster size distribution cannot easily be sampled via
conventional unbiased MD simulation due to both system size and transport limi-
tations. However, given the above assumptions, it is possible to obtain the cluster
size distribution by sampling over the size(s) and configurations of a single sol-
vated cluster using GCMC. Via GCMC, solute molecules can be attached/detached
to/from the surface of the cluster, and cluster size distribution can be efficiently
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sampled. The associated acceptance rules are expressed as in conventional GCMC:

acc(N→ N+ 1) = min
[

1, V

Λ3(N+ 1)exp{β[µ−U(N+ 1) +U(N)]}

]
(2.18)

acc(N→ N− 1) = min
[

1, Λ
3N

V
exp{−β[µ+U(N− 1) −U(N)]}

]
(2.19)

Here, V is the volume of the system, Λ is the thermal de Broglie wavelength, and
U(N) represents the energy of a solution system containing solute cluster of sizeN,
and µ is the solute chemical potential in the (super)-saturated solution. The neglect
of cluster-cluster interactions implies that the system is restricted to sampling a
single cluster. This "single cluster" criterion is enforced throughout the simulation.
This general approach has been used previously by Chen and Siepmann[52, 49]
to study the Lennard-Jones system vapor-liquid and vapor-solid nucleation, and
Wu and Deem[73] to examine the nucleation of zeolite. Here we extended this
approach to nucleation in explicit solvent.

2.2.3 Aggregation-Volume-Bias Monte Carlo

Traditional GCMC employs random insertion and deletion moves to add/remove
particles from the system. While this simple approach works reasonably well for
homogeneous systems, it is highly inefficient for adding/removing particles to a
growing cluster. In that case, the single cluster criterion would be almost inevitably
violated by a solute inserted at a random location.

Here, we utilize aggregation-volume-bias Monte Carlo (AVBMC)[50, 51, 52] to
bias the insertion/deletion moves toward the surface of the cluster. AVBMC chooses
an existing solute atom (within the cluster) as a reference and inserts/deletes
another solute in the vicinity of the reference solute. The AVBMC acceptance rule
is expressed as:

acc(N→ N+ 1) = min
[

1, N× Vin × exp{β[µ−U(N+ 1) +U(N)]}

Λ3 × (N+ 1)× (Nin + 1)

]
(2.20)
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acc(N→ N− 1) = min
[

1, Λ
3 ×N×Nin × exp{−β[µ+U(N− 1) −U(N)]}

(N− 1)× Vin

]
(2.21)

Here, Vin is volume of surrounding area of the reference particle based on Still-
inger’s cluster criterion and Nin is number of other particles in this region.

The AVBMC protocol ensures that single cluster criterion is satisfied during
insertion step, but it may be violated in a deletion step. Thus, after each deletion step,
the new configuration will be checked. If the single cluster criterion is violated, the
deletion step will be rejected immediately. (This rejection does not violate detailed
balance, since the resulting clusters would lie outside the phase space of the single
cluster.) The combination of GCMC/AVBMC allows for efficient sampling of cluster
sizes and configurations.

2.2.4 Expanded Ensemble and Wang-Landau Sampling

In contrast to prior work, we include explicit solvent molecules in our simulation
and simulate charged electrolytes. These factors increase the challenge to efficiently
inserting/deleting solutes, due to steric effects (overlapping solute-solvent) and
large energy fluctuations (compared to kbT , due to strong solute-solvent and solute-
solute interactions).

Here, we adopt the expanded ensemble method[64, 56, 57] to scale the solute
interaction during the course of the insertion/deletion process. In the expanded
ensemble method, different states (i.e., solute numbers) are connected via fictitious
intermediate states. These unphysical intermediates exist solely to smooth the
transition between the (physically meaningful) endpoints and to enhance the
sampling of cluster configurations.

Here, we label the physical states by the number of solutes (or ion pairs) in
the cluster (N), while intermediate states are labeled by N+ λ, and λ(0 < λ < 1)
is a scale parameter that represents a partially interacting (and partially charged)
solute. The number of intermediate states is arbitrary but influences the efficiency
of the simulation.
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Within the expanded ensemble, we can rewrite the AVBMC-GCMC acceptance
rule as:

acc(λm → λm+1) =

min

[
1, (N× Vin

Λ3 )λm+1−λm
((N+ λm)× (Nin + λm))

λm

((N+ λm+1)× (Nin + λm+1))
λm+1

exp{β[(λm+1 − λm)µ−U(λm+1) +U(λm)]}

] (2.22)

acc(λm → λm−1) =

min

[
1, (N× Vin

Λ3 )λm−1−λm
((N+ λm)× (Nin + λm))

λm

((N+ λm−1)× (Nin + λm−1))
λm−1

exp{β[(λm−1 − λm)µ−U(λm−1) +U(λm)]

] (2.23)

Here the subscriptm represents themth intermediate state.
The expanded ensemble modifies the transition path between different states,

but does not influence the free energy difference between the states. As such, it
is unable to efficiently sample states with large variations in free energy, as are
expected during nucleation. Thus, to achieve a relatively uniform sampling for all
states/cluster sizes, we also employed Wang-Landau sampling method[70], which
adds a progressive bias to frequently visited states to achieve a uniform probability
distribution; the unbiased cluster free energy distribution can be trivially extracted
from the applied (converged) Wang-Landau bias.

2.2.5 Hybrid GCMC/MD

While the GCMC approach allows for an efficient sampling of cluster sizes, it is
also necessary to sample both the cluster and solvent configurations. MD provides
an efficient approach to sampling over a wide variety of such configurations. (Note
that the GCMC insertion/deletion already implicitly samples various cluster config-
urations, although with limited efficiency.) Briefly, we employ a hybrid GCMC/MD
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scheme utilizing alternating steps of GCMC insertion/deletion and MD sampling.
We employ constant temperature MD, consistent with the GCMC simulations. The
combination of GCMC and MD steps collectively samples all of the relevant phase
space.

Note that unlike in AVBMC, where the single cluster criterion is rigorously
enforced, the MD can cause this criterion to be violated through particle diffusion
or cluster fragmentation. To prevent this, we add constraints designed to enforce the
Stillinger’s cluster criterion. We utilize constraints based on a minimum spanning
tree (MST) algorithm[67]. Upon full insertion/deletion of a ion pair into the cluster,
a graph is regenerated using particles as graph nodes and particle-particle distance
as graph edges. The MST for the graph is then calculated. For each edge in the
MST, a soft-wall constraint potential is added

U(r) = k×max(0, r− rmax)2 (2.24)

As such, if the distance of two particles of the same edge is within the maximum
distance given by the Stillinger’s cluster criterion, no interaction will be created
between them. However, if two particles diffuse away, a large attractive force will
pull them back. As opposed to a hard wall potential, this restraint is non-singular
but does allow for small violations of the cluster criterion. To prevent this small
violation, we check the cluster criterion after each MD trajectory. In the (unlikely)
event of a violation, the trajectory is rolled back and rerun using a new set of initial
velocities sampled from a Boltzmann distribution. As shown below, we find that
our results are largely insensitive to the details of the constraint, and any artifacts
can be further reduced by updating the MST more frequently.

2.2.6 Chemical Potential Calculation

We calculate the chemical potential of the crystalline solid solute phases via the
Einstein molecule method.[69, 58]. The solution-phase chemical potentials are
calculated via particle insertion. [71] In the particle insertion method, an excess
particle is repeatedly and randomly inserted into the N particle system and the
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excess chemical potential is given by the ensemble average of the energy difference
between (N+1)-particle system and N-particle. As in the case of cluster growth,
we also utilize an expanded ensemble and Wang-landau sampling for efficiency.
Laaksonen et al. used this approach to calculate the solvation free energy of alkali
halide ion pairs.[62, 63, 47]

2.3 Results and Discussion
All MD simulations were carried out using the GPU-accelerated OpenMM software
package,[55] in conjunction with a custom C++ interface to carry out the GCMC
simulations.

2.3.1 Lennard-Jones Liquid/Vapor Nucleation

We first benchmark our methodology via calculation of the free energy surface
for LJ vapor-liquid nucleation, comparing against the earlier work of Chen and
Siepmann[52]. In their work, AVBMC/GCMC was employed to sample the cluster
size distribution, but (given the absence of solvent) no MD or translational MC
moves were carried out to enhance the configurational sampling. Here, we examine
the role of hybrid GCMC/MD sampling (and of the required MST restraints) on
the calculated free energy.

For LJ vapor-liquid nucleation, no periodic boundary condition (PBC) or cutoffs
were applied. Reduced temperatures (T∗) of 0.7 and 0.8 were chosen, along with a
cluster criterion of 1.5 σ. The MD simluations utilized Langevin dynamics with a 2.0
fs time step. Between every 2 GCMC steps, 10 steps of MD were carried out. Only
1 intermediate state (with scaling parameter 0.25) was utilized in the expanded
ensemble. MST restraints were updated whenever a real (integer) state was sampled
by GCMC. The cluster size was sampled from 1 to 200 using 2 windows (1-120
and 80-200). The initial cluster structure for the second window was taken from
the snapshot of first window simulation. Four replicate simulations were carried
out for each window. Wang-Landau sampling was employed in each simulation
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until the Wang-Landau factor converges to 10−3. Subsequently, the cluster size
distribution was obtained via 107 GCMC steps. WHAM analysis[61] was employed
to combine the free energy of different windows using the WHAM package[59]. To
better benchmark against reference data[52] and understand the potential artificial
effects from MST restraints, GCMC simulations without MD were also carried for
this simple system. The results are shown in the Figure 2.1a.

It is clear that both our GCMC and hybrid GCMC/MD results well reproduce the
earlier work. However, we find that the hybrid GCMC/MD sampling is five to six
times efficient compared to sampling only using GCMC (in terms of both wall time
and numbers of GCMC steps required), likely due to the enhanced configurational
sampling afforded by the MD. Figure 2.1a does not show any obvious discrepancy
between results of hybrid GCMC/MD and GCMC sampling, which indicates that
at this temperature (T∗ = 0.7), the MST restraints do not introduce strong artificial
effects on the sampling of cluster configurations.

To better understand MST restraints, we conducted the same type of simulation
at higher temperatures (T∗ = 0.75 and 0.8); the results are shown in the Figure
2.1b and 2.1c. In these cases, we find that our GCMC result essentially perfectly
matches the reference data. However, the hybrid GCMC/MD result shows a small
deviation of ∼ 2 kbT at large cluster size, suggesting a small artifact arising from
the MST restraints. And this deviation is more pronounced at T∗ = 0.8. We
speculate that, at a low temperature, particles do not have a strong tendency to
explore new configurations, and configurations generally (over each of the short MD
trajectory) evolve within the framework defined by MST. In contrast, at relatively
high temperature, the particles are artificially restricted to a subset of phase space.
We find that the influence of the MST restraints can be essentially eliminated by
increasing the frequency at which the MST (and the associated constraints) are
updated. Updating the MST restraints after every GCMC cycle yields the result in
Figure 2.1c, which is in essentially quantitative agreement with the reference data.
Note that systems with stronger interactions (e.g., salts) are unlikely to suffer from
constraint-induced artifacts even with infrequent MST updates.
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(a) (b)

(c)

Figure 2.1: (a) Free energy surface for LJ vapor-liquid nucleation at T∗ = 0.7,
nv = 5.75× 10−3. The black curve is the reference free energy surface calculated
by Chen and Siepmann[52]. The red circles and green triangles correspond to
free energies predicted by hybrid GCMC/MD sampling and GCMC sampling,
respectively. (b) Free energy surface for LJ vapor-liquid nucleation at T∗ = 0.75,
nv = 8.2 × 10−3. The black curve is the reference free energy surface calculated
by Chen and Siepmann[52]. The red circles and green triangles correspond to
free energies predicted by hybrid GCMC/MD sampling and GCMC sampling,
respectively. (c) Free energy surface for LJ vapor-liquid nucleation at T∗ = 0.8,
nv = 1.1 × 10−2. The black curve is the reference free energy surface[52]. The
red circles represent free energies predicted by hybrid GCMC/MD, with MST
updated upon sampling a physical state. The green squares represent the results
with more frequent MST updates after every GCMC step. The blue triangles are
results predicted by pure GCMC sampling.
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(a) (b)

(c)

Figure 2.2: Radial distribution functions for liquid and cluster structures at (a)
T∗ = 0.7, (b) T∗ = 0.75 and (c) T∗ = 0.8. In all three plots, the black curves are
the RDFs for homogeneous liquid structures. The red, green, blue and purple
correspond to the cluster structures at size 50,100,150 and 200, respectively.

To characterize the structures of nuclei, we calculated the radial distribution
functions (RDFs) for clusters taken from the hybrid GCMC/MD simulations at
corresponding temperatures, and compared them against RDFs for LJ liquid. The
results are shown in Figure 2.2. We can observe that the positions of the first two
peaks are almost identical in all RDFs, which indicates even at small cluster size (50),
the nuclei have already expressed the liquid-like characters. Note here, the exact
matching between the peak heights of RDFs for nuclei and liquid is not expected
here, since the surface particles in nuclei are not fully surrounded by neighboring
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particles.

(a) (b)

(c)

Figure 2.3: Particle probability density with respect to coordination number and
the Steinhardt parameter, Q6 at (a) T∗ = 0.7, (b) T∗ = 0.75 and (c) T∗ = 0.8. For
each plot, from top to bottom, the subplots correspond to clusters of size 50, 100,
150 and 200 and the homogeneous liquid.

To further support the this conclusion, we also calculated the Steinhardt param-
eter Q6[65] and coordination number for particles in clusters using PLUMED[68];
the resulting particle probability distributions with respect to both Q6 and coordi-
nation number are shown in Figure 2.3, plotted alongside the corresponding results
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for the bulk liquid. From those plots, we can observe that the particle probability
distribution of cluster shifts towards the distribution of liquid as the cluster size
increases. And at size 200, some of the particles in the core of the cluster even
share the same environment with liquid particles. This excellently agrees with ten
Wolde and Frenkel’s observation.[72] From those analysis, we can conclude that LJ
vapor-liquid nucleation within reduced temperature 0.7∼0.8 can be described as a
one-step procedure without going through other intermediate states, as predicted
by CNT. This observation is consistent with Chen’s and ten Wolde’s works.[52, 72]

2.3.2 Lennard-Jones Liquid/Solid Nucleation

We also applied this approach to LJ vapor-solid nucleation at T∗ = 0.6. For LJ
vapor-solid nucleation, PBCs were applied in conjunction with a cutoff of 4.5 σ; no
long-range interaction were considered. Other simulation details are identical to the
vapor-liquid simulation. LJ solid at this condition forms FCC (face-centered cubic)
lattice. We calculated the crystalline chemical potential using 4000 LJ particles.
The spring strength of Einstein crystal was set as 8000 kbT/A2. In the free energy
perturbation step of Einstein molecule method, 20ns NVT simulation was carried
out for Einstein crystal. During the thermodynamic integration step, 20 λ values
were chosen from Gaussian quadrature on 0 to 1. For each λ value, a 4ns NVT
simulation was carried out.
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Figure 2.4: Free energy surface for LJ vapor-solid nucleation at T∗ = 0.6. Red,
blue and green lines are free energy surfaces corresponding to supersaturation of
S = 1, 3 and 8. N represents the cluster size in all three plots.

We calculate the chemical potential of the solid (and saturated vapor, taken as
Ar) under these conditions to be µLJ = −14.737 ± 0.001 kbT . The calculated free
energy surface at saturation, as well as for supersaturation ratios of S = 3 and 8
are shown in Figure 2.4. At saturation, the free energy monotonically increases
with the growth of cluster size, consistent with a positive surface term (since there
is no driving force for bulk nucleation). At a supersaturation ratio of S = 3, the
free energy surface becomes more flat, exhibiting a critical cluster size beyond 200.
At higher supersaturations (S = 8), the critical cluster size is located at N = 55
corresponding to a 37.3 ± 0.1 kbT free energy barrier. It should be noticed here,
since we ignore the intercluster interactions, at fixed temperature, the free energy
barrier and critical cluster size is only determined by supersaturation, or pressure
in this case.
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(a) (b)

Figure 2.5: (a) RDFs for LJ crystal and clusters at T∗ = 0.6. The black curve is the
RDF for bulk crystal. The red, green, blue and purple correspond to the cluster
structures at size 50,100,150 and 200, respectively. (b) Particle probability density
with respect to coordination number and the Steinhardt parameter, Q6: (top to
bottom) clusters of size 50, 100, 150 and 200, and the bulk crystal.

We also plot the RDFs and particle probability distribution for clusters and
crystal at T∗ = 0.6, as shown in Figure 2.5. The RDFs of clusters clearly represent
the structure of liquid rather than crystal. For this reason, we believe the vapor-solid
nucleation at moderate undercooling (13% with respect to the bulk-phase triple
point of 0.689[49]) proceeds through an intermediate state instead of directly trans-
forming to the crystalline phase. This is also indicated in the particle probability
distribution. In the plot of particle probability distribution, we can observe that
at size 200, some particles in the core of the cluster present similar coordination
numbers as in FCC structure, but the average Q6 value for those particles is only 0.39
while the Q6 for FCC crystal is 0.52. Therefore, those clusters cannot be considered
as crystalline precursors. And the vapor-solid nucleation should be described by a
two-step model.



32

2.4 conclusion
We have developed a hybrid grand canonical Monte Carlo/molecular dynamics
(GCMC/MD) approach in combination with aggregation-volume-bias, expanded
ensemble and Wang-Landau sampling. It circumvents the challenges of dilute
systems, mass transport, and nucleation barriers in crystal nucleation. The method
was benchmarked against Lennard-Jones model system and excellent agreement
was achieved when comparing with reference data. In the next chapter, we will
extend its application to an ionic system with explicit solvent.
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3 application of hybrid gcmc/md approach for ionic
system in solution phase

3.1 Introduction
Despite its accurate prediction for nucleation in LJ system, our hybrid GCMC/MD
approach has not been validated for crystal nucleation in solution phase, with
explicit consideration of solvents and Coulomb interactions. To this end, we em-
ployed a low-solubility rock-salt model[74] which serves as a simple but complete
representation of actual crystals. The model was adapted from an existed NaCl
force field[85, 78] with modification to reduce solubility. Accurate description of
the nucleation for this model requires the method to fully address the challenges
from explicit solvents, nucleation barriers and ineffective phase space samplings
associated with the ionic nucleus.

In the following sections, we first extend our derivation of hybrid GCMC/MD
methodology to ionic systems, in which cations and anions are considered as
different species and inserted separately. The solubility of this rock-salt model is
estimated by equating the solution- and solid-phase chemical potentials obtained by
particle insertion and Einstein molecular method, respectively. The nucleation free
energy is evaluated from our hybrid GCMC/MD approach and structural analysis
is employed on the nuclei to help identify the nucleation pathway. The nucleation
rate is calculated from the free energy barrier and compared with the results from
brute-force MD simulations. Eventually, we extrapolate the rate calculation to
moderate supersaturation and compare it with experimental NaCl nucleation.



38

3.2 Theory

3.2.1 GCMC for Electrolytes

In the above sections, we developed the AVBMC-EE-GCMC algorithm for a system
of single species. For systems consisting of two-component electrolytes such as
NaCl, this methodology needs to be adapted accordingly. During the insertion of
each ion pair, the interaction of cation is gradually turned on first. The pairing anion
will be inserted only after the the cation has been fully inserted. Correspondingly,
in the deletion step, the cation will be removed following the deletion of anion.
Note that the free energies of the (physically meaningful) states are unaffected by
the use of non-charge-neutral intermediates states.

We adapted the original AVBMC procedure as follows (using a cation as an
example): (i) Select a random anion as a reference particle. (ii) Calculate the
volume of the region surrounding the reference anion based on Stillinger’s cluster
criterion (Vin) and count number of other cations (Nin,c) in this region. (iii)
Randomly insert a new cation in this region/remove a random particle from this
region. (iv) Calculate the energy difference (∆E) between new state and old state.
The corresponding acceptance rules are expressed as follows (Detailed derivation
is shown in Section 3.2.2):

acc(Nc → Nc + 1) = min
[

1,
Vin × exp{β[µ2 −U(Nc + 1) +U(Nc)]}

Λc
3 × (Nin,c + 1)

]
(3.1)

acc(Nc → Nc − 1) = min
[

1,
Λc

3 ×Nin,c × exp{−β[µ2 +U(Nc − 1) −U(Nc)]}
Vin

]
(3.2)

Here, Nc is the number of cations in the cluster, Λc is the thermal de Broglie
wavelength for the cation and µ is the chemical potential for each ion pair. Note that
it is impossible to rigorously decompose µ into specific cation/anion contributions.
Here, we arbitrarily utilize µ

2 for the cation/anion, which influences the energy of
the (charged) intermediate states, but not the physically meaningful, neutral states.
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We find that our results are invariant to the details of this insertion process or the
order of ion insertion (see Section 3.3.3). For expanded ensemble system, the above
acceptance rules can be written as follows:

acc(λm → λm+1) =min

[
1, (

Vin

Λc
3 )
λm+1−λm

(Nin,c + λm)
λm

(Nin,c + λm+1)
λm+1

exp{β[(λm+1 − λm)
µ

2 −U(λm+1) +U(λm)]}
] (3.3)

acc(λm → λm−1) =min

[
1, (

Vin

Λc
3 )
λm−1−λm

(Nin,c + λm)
λm

(Nin,c + λm−1)
λm−1

exp{β[(λm−1 − λm)
µ

2 −U(λm−1) +U(λm)]
] (3.4)

3.2.2 Derivation of AVBMC-GCMC for Ion Pairs

In this section, we give a detailed derivation for Eq. 3.1 and 3.2. In Monte Carlo
algorithm, the condition of detailed balance is imposed as the following equation:

K(o→ n) = K(n→ o), (3.5)

where K(o → n) is the flow of being in the configuration from an old state o to
a new state n. And it is defined as the product of the probability of being in the
current state o, N(o), the transition probability of generating a move from state o to
state n, α(o→ n) and the probability of accepting this move, acc(o→ n):

K(o→ n) = N(o)× α(o→ n)× acc(o→ n), (3.6)

According to cluster size distribution (Eq. 2.14), the probability of finding the
cluster of size N is given by

N(N) = ZNexp[βµN], (3.7)
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where ZN is defined as

ZN =
1

(ΛcΛa)
3N
N!2Λsolv

3NsolvNsolv!

∫
dr6N+3Nsolvw(r6N)exp[−βU(r6N, r3Nsolv)]

(3.8)
for ion pairs in solution. In this expression, N is the size of the cluster/number
of ion pairs and Nsolv is the number of the solvents. Λ is the thermal de Broglie
wavelength and subscription c,a and solv stands for cation, anion and solvent. w
in the integrand is the weight function corresponding to the cluster criterion. The
number of solvents is constant during the simulation. Thus,

N(N) ∝ exp[βµN]

(ΛcΛa)
3N
N!2

∫
dr6N+3Nsolvw(r6N)exp[−βU(r6N, r3Nsolv)] (3.9)

In our procedure of inserting an ion pair, the cation is first inserted according to
the following scheme:
1. Select a random anion as a reference particle.
2. Calculate the volume of the region surrounding the reference anion based on
Stillinger’s cluster criterion (Vin).
3. Randomly insert a new cation into this region.
The total volume for inserting the cation isNa×Vin whereNa is number of anions
and it equals to N. So the probability of generating an insertion step for cation is
given by

α(Nc → Nc + 1) =
dr3

Na × Vin
1

Nc + 1, (3.10)

where dr3/Na × Vin is the probability from selecting a specific position in volume
Na × Vin and 1/Nc + 1 is included here to remove the distinguishability brought
by the new inserted cation.

For the reverse step, the deletion of one cation fromNc + 1 cations is proceeded
as follows:
1. Select a random anion as a reference particle.
2. Calculate the volume of the region surrounding the reference anion based on
Stillinger’s cluster criterion (Vin) and count number of cations (Nin,c + 1) in this
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region.
3. Remove a random cation from this region.
The probability of generating such deletion step is given by

α(Nc + 1→ Nc) =
1
Na

1
Nin,c + 1, (3.11)

where 1/Na is from selecting a reference anion from Na anions and 1/Nin,c + 1 is
from selecting a specific cation from all cations around this reference anion.

Following the detailed balance and Metropolis algorithm[84, 81], the acceptance
probability is given by

acc(Nc + 1→ Nc) = min

[
1, N(Nc + 1)

N(Nc)

α(Nc → Nc + 1)
α(Nc + 1→ Nc)

]
= min

[
1,
Vin × exp{β[µ2 −U(Nc + 1) +U(Nc)]}

Λc
3 × (Nin,c + 1)

]
(3.12)

And the acceptance probability for deleting a cation is

acc(Nc → Nc − 1) = min
[

1,
Λc

3 ×Nin,c × exp{−β[µ2 +U(Nc − 1) −U(Nc)]}
Vin

]
(3.13)

Note we arbitrarily utilize µ
2 for the cation/anion and it will not influence the

physically meaningful state.
For the insertion and deletion of anion, following the same procedure, we will

get

acc(Na + 1→ Na) = min

[
1,
Vin × exp{β[µ2 −U(Na + 1) +U(Na)]}

Λa
3 × (Nin,a + 1)

]
(3.14)

acc(Na → Na − 1) = min
[

1,
Λa

3 ×Nin,a × exp{−β[µ2 +U(Na − 1) −U(Na)]}
Vin

]
(3.15)
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The only difference is in the derivation, the number of the reference cations Nc
equals N+1 instead of N.

3.3 Results and Discussion
For our low-solubility rock-salt system, we adopted Alejandre and Hansen’s set of
force fields,[74] consisting of a modified NaCl model[85, 78] in conjunction with
the SPC/E model[76]. In order to enhance aggregation (i.e., reduce solubility),
Alejandre and Hansen added an LJ interaction site to the H atoms to reduce the
Cl-H attraction; we retain this modification.[74] The final force field parameters are
listed in Table 3.1. All LJ interactions are calculated using Lorentz-Berthelot rule. In
contrast to ref 74, we did not omit H-H and H-O LJ interaction, for computational
convenience. As shown in next section, unlike the original NaCl force field, the
modified model is a low-solubility weak electrolyte and thus an ideal candidate for
the present study.

PBCs were employed with LJ cutoff of 1.5 nm. No long-range corrections were
considered. Particle mesh Ewald (PME) summations were carried out for Coulomb
interactions. Temperature was chosen at room temperature (298.15 K), enforced us-
ing a Langevin thermostat. During the hybrid GCMC/MD simulation, the pressure
was fixed at 1 atm using a Monte Carlo barostat. The Stillinger’s cluster criterion was
chosen at 0.35 nm and only connections between cations and anions are considered.
A total 2500 water molecules were positioned around NaCl cluster. Between every
2 GCMC steps, 10 steps of MD were carried out with a 2 fs time step. Cations and
anions are inserted and deleted individually. For each ion, four intermediates with
quadratically distributed scaling parameters were utilized for the expanded en-
semble. Thus, for each ion pair, there were 9 intermediate states in total, including
a state containing fully inserted cation. MST restraints were updated whenever
a physical (integer) state was sampled by GCMC. The cluster size was sampled
from 1 to 40 using 4 windows (1-16, 8-24, 16-32 and 24-40). Except for the first
window, the initial cluster structure for each window was taken from a snapshot
of the simulation of the previous window. four replicate simulations were carried
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Table 3.1: LJ and Coulomb parameters of NaCl and water. σ and ε are in Å and
kJ/mol, respectively.

charge σ ε

Na +1 0.2584 0.4184
Cl -1 0.4036 0.4184
O -0.8476 0.3166 0.6498
H +0.4238 0.065 0.1663

out for each window. Wang-Landau sampling was employed in each simulation
until the Wang-Landau factor converged to 10−4. The biases were collected and
analyzed using WHAM.

The chemical potential for solid- and solution-phase salt were also calculated.
For particle insertion, most simulation details are unchanged from the hybrid
GCMC/MD, except that the volume is fixed during the entire simulation. After
Wang-Landau sampling, 2× 106 MC steps were carried out to refine the chemical
potential. For the Einstein molecule approach, 4000 NaCl ion pairs were used. The
spring strength of Einstein crystal was set as 8000 kbT/A2. In the free energy per-
turbation step, a 20 ns NVT simulation was carried out for Einstein crystal. During
thermodynamic integration, 20 λ values were chosen from Gaussian quadrature on
0 to 1. For each λ value, a 4ns NVT simulation was carried out.

3.3.1 MST restraints for NaCl

In Chapter 2, by comparing the nucleation free energy surface predicted by hybrid
GCMC/MD method with reference data for the LJ systems, we indirectly proved
that the artificial effects of MST restraints can be reduced to a minimum level as
long as the restraints are frequently updated. To verify whether this conclusion
is also valid for the NaCl system, here we carried out 400 ps simulations for 100
NaCl clusters of size 5 with MST restraints both fixed and updated every 200 fs,
and corresponding trajectories of the average value of the radius of gyration (Rg)
are plotted in Figure 3.1.
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Figure 3.1: Trajectories of the average value of Rg for NaCl clusters at size 5 with
MST restraints fixed (red) and updated every 200 fs (green).

From the plot, we observe that the fixed MST restraints make the clusters more
compact due to the artificial effects as indicated in the gradually reduced Rg. And
we think the reason for such effects is that there are different numbers of “graphs”
(MSTs) allowed for compact vs extended clusters (in particular, more graphs al-
lowed for the former), and enforcing a single graph thus biases the simulation
toward compact structures. An alternative way of explaining this is that there is
more overlap in the phase space of the graphs for the compact structures, systemat-
ically biasing the results that way. Fortunately such effects can be eliminated by
updating MST restraints every 200 fs as indicated in the green curve. In addition to
the indirect evidence from Chapter 2, the observations here directly proves that the
frequently updated MST restraints will not affect the structure of the nucleus.

3.3.2 Solubility Estimation for NaCl

Prior to examining the nucleation of our rock-salt system, we first calculated the salt
model in SPC/E-H water. We find the solubility by equating the solution- and solid-
phase chemical potentials. By thermodynamic integration to an Einstein crystal,
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Figure 3.2: Excess chemical potential µex of solute plotted with the square root of
concentration. Black dots are the excess chemical potentials calculated via particle
insertion. The dashed line is the linear fit of the excess chemical potential with the
square root of concentration.

we obtained the chemical potential µ = −825.29 kJ/mol for the solid. To obtain the
solute chemical potential of this model as a function of concentration, we calculated
the excess chemical potential, µex, for the solute in a range of concentrations and
extrapolated it using Debye-Hückel theory. The total chemical potential is given by
adding on the ideal gas chemical potential, µid.

According to Debye-Hückel theory, in dilute limit, the logarithm of activity
coefficient is linear with the square root of ionic strength (and concentration). Thus,
we linearly fit excess chemical potential and square root of concentration as shown
in Figure 3.2. By extrapolation, we estimated the solubility of this model as 0.027 M,
with a similar solubility to LiF, another rock-salt structure weak electrolyte. This
salt force field is thus ideal for the present study since its low solubility ensures
that cluster-cluster (and cluster-solute) interactions should be negligible (a key
assumption), but the solubility remains high enough that our estimated nucleation
rates can be validated against large-scale brute-force MD simulation (vide infra).

The chemical potentials of the solute at other concentrations were also calculated
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Table 3.2: Chemical potentials of solute at different concentrations. All units in
kJ/mol.

C(M) 0.5 1.0 2.0 2.16 2.68 3.18 4.0
µid -65.0 -61.5 -58.1 -57.7 -56.6 -55.8 -64.7
µex -746.8 -747.3 -748.0 -748.1 -748.3 -748.6 -758.9
µtot -811.8 -808.8 -806.1 -805.8 -805.0 -804.4 -803.6

and used as input to generate nucleation free energy surfaces at various supersatu-
rations. Selected concentrations and corresponding chemical potentials are listed
in Table 3.2

3.3.3 Nucleation Free Energy Surface

Having determined the solute chemical potentials, we then used our hybrid GCM-
C/MD method to calculate the nucleation free energy surface for the salt in water;
results are shown in Figure 3.3. In the left panel, the free energy surfaces at solute
concentrations of 0.5, 1.0, 2.0 and 4.0 M are plotted. The free energy barrier for
nucleation, ∆G6=, at 2.0 M is 34.7 ± 2.7 kJ/mol, and is reduced to 7.6± 1.3 kJ/mol
under large supersaturation (4.0 M). Consistent with these barriers, we find that
large-scale brute-force MD under these same conditions leads to nucleation which
is essentially unobservable (within microsecond time scales) and extremely rapid
(within a nanosecond), respectively. Therefore, we calculated also several addi-
tional free energy surfaces at intermediate concentrations of 2.17, 2.68 and 3.18
M, corresponding to 100,125 and 150 NaCl ion pairs in 2500 waters. The resulting
nucleation free energy surfaces are plotted in the right panel of Figure 3.3. The
corresponding critical cluster size and free energy barriers are listed in Table 3.3.
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(a) (b)

Figure 3.3: NaCl nucleation free energy surfaces at various concentrations. (a)
Nucleation free energy surfaces at 0.5, 1.0, 2.0 and 4.0 M. (b) Nucleation free energy
surfaces at 2.17, 2.68 and 3.18 M. N is the cluster size (number of ion pairs) in both
plots.

To understand the effect of inserting sequence, we also compared the free energy
surfaces obtained through different inserting sequences(Figure 3.4) at concentration
of 2.68 M. From this comparison, we can conclude that the details of the insertion
procedure can be ignored and the ordering (and character) of the intermediate
states does not affect the sampling, as expected, even for non charge-neutral states.
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Figure 3.4: Free energy surfaces obtained by inserting cation first(red) and inserting
anion first(green).

3.3.4 Structural Analysis for Clusters

Snapshots of the cluster structures at different nucleation stages were saved from the
GCMC/MD simulation. In Figure 3.5a, snapshots corresponding to prenucleation,
the critical cluster size, and postnucleation are superimposed on the free energy
surface from the 2.68 M simulation. The first snapshot were taken at cluster size
N = 8. At this prenucleation stage, Na+ and Cl− form a loose and amorphous
structure. Although no clear ordered bulk structure exists inside the cluster, the
single layer of NaCl still preserves a rock-salt (100) surface structure. For both the
critical cluster and postnucleation stage, clear rock-salt structures were observed.
To further quantify the evolving coordination and local order of the growing cluster,
we calculated the Steinhardt parameter[86]Q6 and coordination number for ions in
clusters using PLUMED[87]; the resulting ion probability distribution with respect
to both Q6 and coordination number is shown in Figure 3.5b, plotted alongside the
corresponding results for the bulk crystal (with a bulk coordination number of 6
and small Q6). From this plot, we observe that, with increasing cluster size, the
fraction of bulk-like ions increases, exhibiting both full octahedral coordination and
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(a) (b)

Figure 3.5: (a) Nucleation free energy surface analysis and cluster structures. The
red solid line is the nucleation free energy surface at 2.68 M. The blue dashed line
is a parabolic fit in the region close to the free energy barrier at critical cluster size.
Snapshots of clusters with N = 8, 13 and 24 ion pairs are shown on top of the
free energy curve. Na+ and Cl− are colored in blue and green, respectively. (b)
Ion probability density with respect to coordination number and the Steinhardt
parameter, Q6: (top to bottom) clusters of size 8, 13 and 24, and the bulk crystal.

appropriate local order. Therefore, we believe that, at this concentration (and for
this salt model), nucleation is governed by CNT rather than a two-step transition
mechanism (which would involve a transformation from an initial amorphous to
final crystalline structure). This conclusion is consistent with results from Juang et
al.,[82], who found that nucleation in aqueous NaCl solutions shifts from a one-step
mechanism to a two-step mechanism on crossing the spinodal.
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3.3.5 Nucleation Rate Estimation from Free Energy Surface

Given the calculated free energy barriers, we can estimate the nucleation rate via
the analytic theory[75, 77]:

r = βZCexp

(
−
∆G6=

kbT

)
(3.16)

Here, C represents concentration, and Z is the Zeldovich factor, which characterizes
the flatness of free energy surface at the critical cluster size, which is related to a
recrossing factor of the nucleation process:

Z =

√√√√−
1

2πkbT
∂2∆Gn

∂n2

∣∣∣∣∣
n=n∗

(3.17)

We applied parabolic fit of the free energy surface near critical cluster size as shown
in Figure 3.5, to estimate the curvature of ∆Gwith respect to the cluster size. β is
the growth rate of the critical cluster which can be estimated via[83]:

β = 4πr∗Di
Ω

x0
i

yei
(3.18)

where r∗ is radius of critical cluster and Di is the diffusion for rate-limiting agent
i. Here we estimate r∗ by assuming a spherical critical cluster, and take the diffu-
sion constants of the ions from the sum of their MD-calculated values. Ω is the
volume corresponding to one atomic site, which can be directly calculated from
Stillinger’s cluster criterion. x0

i and yei are the respective atomic fraction in the solu-
tion phase and solid phase. Calculated Z and β values and the resulting calculated
nucleation rates are listed in Table 3.3. Note that the rates are given in units of
#nucleation events/(simulation box·ns), which facilitates the direct comparison of
the nucleation rates with those observed from large-scale brute-force MD in the
next section.
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Table 3.3: Nucleation rate calculation for low-solubility rock-salt nucleation

C(M) n∗ ∆G6=(kJ/mol) Z β(ns−1) r(ns−1)
2.17 13 31.0 0.17 28.0 2× 10−3

2.68 13 21.7 0.17 36.7 1.2× 10−1

3.18 13 14.4 0.17 37.7 2.8

3.3.6 Nucleation Rate Estimation fromMolecular Dynamics

Under relatively high supersaturation, it is possible to compare (and thus bench-
mark) the above predicted nucleation rates directly against large-scale MD simula-
tions. We thus conducted long MD simulations, recording the size of the largest
cluster along the trajectory as an indicator of nucleation at three concentrations
(2.17, 2.68 and 3.18 M). Four replicate MD simulations were carried out for each
concentration. To evaluate the nucleation rate, we recorded the time at which
nucleation occurs during the trajectory (if any). The nucleation time must be suffi-
ciently long enough to allow for quasi-equilibration prior to nucleation such that
the observed nucleation time is independent of the initial ion configuration. Only
the 2.68 M simulation yields a useful measure of rate, since the 2.17 M and 3.18
M simulations led to no nucleation and nearly immediate nucleation, respectively.
Therefore, we conducted a total of 32 200 ns MD trajectories at 2.68 M. Nucleation
events were observed in nine trajectories, with corresponding nucleation times of
30, 50, 65, 80, 80, 125, 130, 145, and 160 ns; 8 (of the 32) representative trajectories
are plotted in Figure 3.6.

Our GCMC/MD simulation at this concentration predicted a critical cluster
size as 13. From the MD trajectory, we can estimate the critical size by examining
the local maximum cluster size prior to nucleation. This value fluctuates between
10∼20 with few exceptions, consistent with the critical cluster size calculated via
GCMC.

Assuming that the nucleation events obey a Poisson distribution, the probability
of k nucleation events happening in n simulations within a time interval t can be
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Figure 3.6: Selected MD trajectories of largest cluster sizes.

expressed as:

P(k, t,n) = e−nrt (nrt)
k

k! (3.19)

We picked 10 time intervals from 0∼20 ns to 0∼200 ns and counted the number of
nucleation events within each time interval for 32 trajectories. The nucleation rate
was then estimated from these data points using maximum likelihood estimation
(see Figure 3.7). The nucleation rate we extracted from this process is 1.4x10−3

/(simulation box· ns) which differences by an order of 2 from that calculated via
our GCMC/MD method (1.2x10−1).

Note that quantitative agreement should not necessarily be expected in this case
due to the slightly different approximations made in the two methods. In particular,
the GCMC simulations neglect the cluster-solute interactions. Although these
interactions are quite modest for dilute solutions, they are not entirely negligible
(especially at large supersaturations), and their neglect may artificially reduce the
nucleation rate. In addition, the concentrations (and thus chemical potential) of
the solute is not fixed during the MD simulation, and decreases during the course
of aggregation. If there is a cluster of size 13 existing in the simulation, then the
effective concentration is reduced by ∼10.4%, which would reduce the chemical
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Figure 3.7: Nucleation rate analysis for MD trajectories. The black solid line is the
expected number of nucleations according to Poisson distribution of the estimated
nucleation rate. The blue dots are actual observed number of nucleations in 32
trajectories within different time intervals.

potential by ∼0.22 kbT for each ion pair. And correspondingly, the free energy barrier
would be increased by in total 0.22×13=2.86 kbT and lead the nucleation rate to be
reduced by ∼ 17 times. Considering there may be more than one agglomerate in
the system before one of them reaching the critical cluster size, the nucleation rate
will possibly be reduced by more than ∼ 17 times, which is close to the difference
between estimated rates from hybrid GCMC/MD and brute-force MD. In contrast
to brute-force MD, GCMC provides a more faithful description of nucleation from
bulk solution, where the solute concentration is essentially fixed. Nonetheless, the
agreement between the two disparate methods is quite satisfying.

3.3.7 Nucleation under Modest Supersaturation

It is interesting to note that Desarnaud et al. find that spontaneous primary nucle-
ation and growth of NaCl are observed at a supersaturation ratio of ∼ 1.6 (implying
a limit to the supersaturation), much lower than the supersaturation ratios utilized
in the above MD simulations (∼ 100).[79] This large discrepancy can be largely
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Table 3.4: Nucleation rate estimates for rock-salt solution at dilute concentrations.

C(M) n∗ ∆G6=(kJ/mol) Z β(ns−1) r(L−1s−1)
0.1 332 943.44 0.020 4.9 3× 10−135

0.2 94 363.77 0.046 10.6 1× 10−32

0.3 55 231.96 0.066 11.5 3× 10−9

0.4 40 172.83 0.082 12.6 1× 102

0.5 32 138.79 0.095 15.8 2× 108

resolved by a simple comparison of the time- and length-scales of the experiment
as compared to simulation, where (in the former case) only a single nucleation
event in the macroscopic sample is sufficient to induce crystallization.

In contrast to MD, our GCMC approach provides a convenient approach to
estimate nucleation barriers and rates at far smaller concentration/supersaturation,
making more direct connection with experiment. We extrapolated the nucleation
free energy surface to larger cluster size and estimated the rate for concentration
0.1, 0.2, 0.3, 0.4 and 0.5 M, with the results given in Table 3.4 (with rates now given
as nucleation events per L · s).

From Table.3.4, we conclude that at concentration of about 0.3-0.4 M, we expect
to see nearly immediate nucleation in a macroscopic sample (of this model salt).
The concentration still corresponds to a relatively high supersaturation ratio of 15,
still roughly an order of magnitude higher than what is achievable for NaCl in exper-
iment. We can understand this discrepancy by examining the solid-solution surface
tension of the model salt (0.18 N·m−1) as compared to that of NaCl for experiment
(0.08 N·m−1). Since the current salt force field yields a gas-phase (100) surface
energy of close to the experimental value for NaCl[80] [165 vs 170 kJ/(mol·nm2)],
we attribute the likely cause of the anomalously high solid-solution surface tension
to the added Lennard-Jones interaction for H atom, originally utilized by Alejandre
and Hansen. This additional term reduces the net attraction between the water H
and Cl−, thus increasing the surface tension. The markedly different solid-solution
surface tensions yield dramatically different surface energies as the size of the
cluster grows, contributing an additional ∼30kbT to the nucleation barrier at the
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critical cluster size and thus dramatically stabilizing the supersaturated solution of
the model salt as compared to NaCl. We anticipate that a more sophisticated salt
(polarizable) force field, exhibiting accurate solubility and surface energy, would
likely exhibit a far lower maximum supersaturation.

3.4 conclusion
We have utilized a hybrid grand canonical Monte Carlo/molecular dynamics (GCM-
C/MD) approach that allows us to model the nucleation of low-solubility materi-
als/weak electrolytes in the presence of explicit solvent. Using this approach, we
examined the free energy surface and associated barriers for the nucleation of an
aqueous solution of a sparingly soluble salt, finding calculated nucleation rates
that are in excellent accord with large-scale brute-force MD simulations. Upon
extrapolating the free energy barriers to smaller supersaturation, and accounting
for the errors in the salt solution surface tension, we find absolute nucleation rates
that are not inconsistent with those observed for related salts in aqueous solution.
We believe that our hybrid GCMC/MD method is one of the first methodologies
that is able to address the system size, mass transport, and rare event sampling
challenges that are inherent in the study of the nucleation of weak electrolytes in an
explicit solvent. We anticipate that this approach can be easily extended to study
other weak electrolytes/low-solubility materials, such as calcium carbonate and
lithium fluoride, and potentially even nanoporous materials, where nucleation may
involve solvent incorporation and/or templating.
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4 modeling nucleation via graph-based approach

4.1 Introduction
The hybrid GCMC/MD methodology successfully addresses the challenges of dilute
systems, mass transport and explicit solvents in the solution-phase nucleation. But
the underlying Markov chain Monte Carlo (MCMC) algorithm determines its
substandard performance in terms of efficiency and parallelism, and thus limits its
extension to more complicated systems. Due to the intrinsically serial property of
the MCMC algorithm, it is not straight to parallel our hybrid GCMC/MD sampling
program among multiple machines and benefit from high throughput computing.
And the MCMC sampling over the nucleate cluster size is indeed a one-dimensional
random walk which scales quadratically with the number of states. Therefore it
is not optimal to extend this approach to larger cluster sizes, especially when the
modeling system employs a relatively large number of intermediate states for
expanded ensemble.

In addition to the above issues, the hybrid GCMC/MD also suffers from in-
effective samplings. The hybrid GCMC/MD relies on the unbiased MD moves
coupled with frequent insertions/deletions to sample the configurations of the nu-
cleus. When the nucleus is involved with polymorphism and charges, MD without
bias potential is usually not capable of sampling over the entire configurational
phase space.[90] Our hybrid GCMC/MD approach manages to circumvent this
issue by employing MC moves. The frequent insertions/deletions help to boost the
reconstruction of the nucleus and allow multiple structures to be sampled during
a single GCMC/MD simulation. But when the nucleus reaches to a certain size
with a clear structure, rebuilding the nucleus to another structure may require the
deletion of most existed particles and reduce the cluster to an early nucleation stage.
Such moves are redundant in the purpose of structural sampling and significantly
waste the computing resources.

To address the above challenges, in this chapter, we present a simulation ap-
proach based on the graph structure of the nucleus. Naive MD simulation cannot
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work because it will only sample at most a sub-ensemble of cluster structures,
therefore our idea is to decompose this ensemble of cluster structures into various
sub-ensembles and sample each of them individually. Since the phase space of the
nucleus in crystallization usually consists of several representative graph structures
and each graph structure can be considered as a well defined sub-ensemble, the
above idea can be easily applied here. In this graph-based method, multiple simu-
lations are carried out and each of them only focuses on the nucleation associated
with one specific structure. And the overall nucleation behavior can be recovered
by combining the contribution from each single simulation with proper weight.

In the following sections, we first develop a non-graph-based method to estimate
the nucleation free energy via a step-by-step procedure. In each step, a single
thermodynamic integration (TI) is carried out for calculating the associated free
energy. This approach is benchmarked against LJ nucleation and compared with
the results predicted by our hybrid GCMC/MD method. Starting from this non-
graph-based approach, the graph-based one is derived by considering multiple
structurally specified simulations for each insertion step. And the free energy
change obtained in each single simulation will contribute to the overall free energy
calculation. To validate this approach, we test it on the nucleation in lattice model
and the results are compared against values from GCMC simulations. According to
the derivation, the graph-based method requires a clear "graph" definition, which
is not easily achievable for actual atomistic systems. To avoid this restriction, we
provide another justification for this approach from Jarzynski Equality[92, 91]
and consider it as a nonequilibrium method. From this perspective, the graph-
based approach no longer requires a rigorous "graph" definition and can be easily
extended to atomistic systems. In the end, we employ the same low-solubility
rock-salt model from Chapter 3 as a test system and compare the results from the
graph-based approach and the hybrid GCMC/MD method.
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4.2 Non-graph-based Thermodynamic Integration
for Nucleation

4.2.1 Theory

Consider a cluster of size N at temperature T in a dilute system where the intercluster
interactions can be safely ignored. The canonical ensemble partition function of
this cluster is given by:

ZN =
1

N!Λ3N

∫
dr3Ne−βU(r3N)w(r3N), (4.1)

where Λ is the thermal de Broglie wavelength of the particle, β ≡ 1/kbT is the
reciprocal temperature, k is Boltzmann constant, U is the energy of the system,
and w is the weight function representing the cluster criterion. As in previous
chapters, the cluster criterion is taken from Stillinger’s[96] definition. In the case of
solution-phase nucleation, the integral of solvent degrees of freedom should also
be included. The free energy difference between clusters of size N and N+ 1 can
be expressed as:

∆G = −kbT ln ZN+1

ZN

= −kbT
1
NΛ3

∫
dr3(N+1)e−βU(r3(N+1))w(r3(N+1))∫

dr3Ne−βU(r3N)w(r3N)

(4.2)

And nucleation free energy surface can be obtained by calculating this ∆G for each
size N.

Here we introduce a fictitious state denoted as N + 1 ′, in which the cluster
consists of N + 1 particles but one of them is a non-interacting particle ("ghost
particle"). It should be noticed here the ghost particle is also part of the cluster
and must satisfy the cluster criterion. The partition function of state N+ 1 ′ can be
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written as:

ZN+1 ′ =
1

(N+ 1)!Λ3(N+1)

∫
dr3(N+1)e−βU(r3N)w(r3(N+1)), (4.3)

where the energy U is calculated over N real particles. With this intermediate state,
the free energy change ∆G can be decomposed into two contributions:

∆G = −kbT ln ZN+1 ′

ZN

ZN+1

ZN+1 ′

= −kbT ln ZN+1 ′

ZN
− kbT ln ZN+1

ZN+1 ′

(4.4)

We further define ∆G1 and ∆G2 as

∆G1 = −kbT ln ZN+1 ′

ZN

= −kbT ln 1
(N+ 1)Λ3

∫
dr3(N+1)e−βU(r3N)w(r3(N+1))∫

dr3Ne−βU(r3N)w(r3N)

(4.5)

∆G2 = −kbT ln ZN+1

ZN+1 ′

= −kbT

∫
drN+1e−βU(r3(N+1))w(r3(N+1))∫
drN+1e−βU(r3N)w(r3(N+1))

=
〈
e−β∆u

〉
N+1′

(4.6)

And the free energy change ∆G of inserting a particle into the cluster is the sum-
mation of ∆G1 and ∆G2. Instead of evaluating ∆G directly using GCMC as we
proposed in the hybrid GCMC/MC approach, here we calculate this free energy
through two separate terms - ∆G1 and ∆G2.

4.2.1.1 GCMC-Swap

Here we define the effective volume Veff as:

Veff =

∫
dr3(N+1)e−βU(r3N)w(r3(N+1))∫

dr3Ne−βU(r3N)w(r3N)
(4.7)



62

And ∆G1 can be written as:

∆G1 = −kbT ln Veff

(N+ 1)Λ3 (4.8)

Thus the essential part of estimating ∆G1 is the correct calculation of Veff. We may
consider Veff as the volume of the region around the cluster of size N and this
volume can be easily estimated by numerical Monte Carlo. But this assumption
ignores cases where the ghost particle lies in the ’interior’ of the cluster, i.e., where
the original N atoms alone do not satisfy the cluster criterion in the absence of the
ghost particle.

To correctly include such configurations, we developed a new GCMC-Swap
method, which is an adaption of naïve GCMC. This method consists of three types
of moves: insertion, deletion and swap. In the insertion step, we insert a non-
interacting particle into the system with a cluster of size N and decide whether to
accept this insertion by checking the cluster criterion for N+ 1 particles. During
the deletion step, the non-interacting atom will be removed. If the deletion leads to
the break of cluster criterion (the remaining N particles do not satisfy the cluster
criterion), this move will be rejected. In addition to insertion and deletion, there
is a third type of Monte Carlo move called "swap". In the swapping move, we
switch the non-interacting particle with a random interacting particle and decide
whether to accept this move by the energy change. Such steps allow us to sample
configurations which are ignored if we evaluate Veff by numerical Monte Carlo
and thus give a correct volume prediction.

4.2.1.2 Thermodynamic Integration

∆G2 is defined as the free energy difference between state N + 1 ′ and N + 1 and
this can be obtained by thermodynamic integration (TI)[93] via gradually turning
on the interaction of the ghost particle through a coupling parameter λ. The free
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energy change during TI can be expressed as:

∆G2 =

∫λ=1

λ=0
dλ

〈
∂U(λ)

λ

〉
λ

(4.9)

This integration will be carried out numerically by Gaussian quadrature. To avoid
singularity when λ approaches 0, LJ interaction will be replaced by a soft-core
potential[95]:

ULJ(λ) = 4λε
[(

σ

reff

)12

−

(
σ

reff

)6
]

, reff = σ

[
0.5(1 − λ) +

( r
σ

)6
]1/6

(4.10)

For the initial configuration, a ghost particle is attached to the cluster of size
N. During simulation, the Stillinger’s cluster criterion is enforced on total N+1
particles and the MST restraints are established based on the graph structure of the
cluster to prevent it from falling apart. After every few MD steps, the graph will
be regenerated and MST restraints will be updated accordingly to minimize the
artificial effects from the restraints. To successfully apply this method, TI is expected
to be able to effectively sample all cluster sub-ensembles, as well as configurations
with the non-interacting particle in the interior of the cluster. This assumption
is only valid for simple systems. For strong-interaction systems, more advanced
sampling techniques are required.

4.2.2 Results: Lennard-Jones Nucleation

We benchmarked our non-graph-based methodology via calculation of the free
energy surface for LJ vapor-liquid nucleation, comparing against our previous
hybrid GCMC/MD approach[94]. For LJ vapor-liquid nucleation, no PBC or cutoffs
were applied. Reduced temperature (T∗) of 0.7 was chosen, along with a Stillinger’s
cluster criterion of 1.5 σ. The MD simulations utilized Langevin dynamics with a 2.0
fs time step. MST restraints were updated every 200 fs. The cluster size was sampled
from 1 to 60 through 59 consecutive insertions. Four replicate thermodynamic
integrations and GCMC-Swap simulations were carried out for each insertion.
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Figure 4.1: Free energy surface for LJ vapor-liquid nucleation at T∗ = 0.7, nv =
5.75 × 10−3. The red curve is the reference free energy surface calculated by our
hybrid GCMC/MD approach[94]. The green circles correspond to free energies
predicted by non-graph-based method. N represents the cluster size in the plots.

Each GCMC-Swap simulation consists of 106 MC steps with a 10% probability of
selecting insertion moves, a 10% probability of selecting deletion moves and an 80%
probability of selecting swapping moves. During each thermodynamic integration,
10 λ values were chosen from Gaussian quadrature on 0 to 1. For each λ value, a
200 ps NVT simulation was carried out and energy derivative was sampled every
200 fs. The results are shown in Figure 4.1.

The non-graph based method well reproduce the result from earlier work. In
addition, we also compare the efficiency of two approaches. For simple systems like
LJ, the thermodynamic integration approach does not necessarily provide more
efficiency than hybrid GCMC/MD approach, but it provides a better scalability.
Via step-wise procedure, the new approach scales only linearly with the cluster
size. While the hybrid GCMC/MD is intrinsically a random work sampling and
scales quadratically with the number of states. This difference is more pronounced
when expanded ensemble is employed in hybrid GCMC/MD method. Also, since
the free energy can be directly calculated by thermodynamic integration instead of
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being estimated from cluster distribution, this new approach does not suffer from
rare event sampling issue caused by nucleation free energy barriers.

4.3 Graph-based Method

4.3.1 Theory

The non-graph-based method works for non-solution-phase, weak-interaction sys-
tems like Lennard-Jones model. But for nucleation involved with explicit solvents
and strong interactions, this approach cannot guarantee that all sub-ensembles of
clusters are completely sampled. This ineffective sampling will lead to an inaccu-
rate estimation of ∆G2 as the TI cannot explore all phase space with unbiased MD.
additionally, the evaluation of Veff will also become impractical in such systems.
GCMC-Swap method requires a reasonable acceptance ratio for swapping moves.
But with strong interactions and explicit solvents, most swapping moves will be re-
jected due to steric effects (overlapping solute-solvent) and large energy fluctuations
(compared to kbT , due to strong solute-solvent and solute-solute interactions).

To address the sampling issue, here we introduce a graph-based approach. For
the solution-phase crystallization, the configurations of the nucleus are usually
dominated by several representative graph structures. Although the comprehensive
sampling over all of them is not achievable in one single unbiased MD simulation,
the phase space defined by each graph can be easily explored. Our idea is to
describe the entire nucleation by combining the nucleation corresponding to each
representative graph structure. And such structure-dependent nucleations can be
easily modeled with relatively short simulations. The graph-based idea is illustrated
in Figure 4.2.

As before, we start from the partition function of the cluster at size N. Since the
entire ensemble of configurations can be categorized into several representative
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Figure 4.2: Schematic representation of the graph-based approach. The entire
nucleation can be considered as the combination of nucleation for each graph
structure.

graph structures, the partition can be rewritten as:

ZN =
1

N!Λ3

∑
i

∫
i

dr3Ne−βU(r3N)w(r3N), (4.11)

where subscription i is the index for graph structures and the integral of i includes all
configurations defined by the corresponding graph. Here, we denote the partition
function for each graph structure as:

ZN,i =

∫
i

dr3Ne−βU(r3N)w(r3N) (4.12)

Then the total partition function can be written as the sum of those individual
partition functions:

ZN =
∑
i

ZN,i (4.13)
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With those definitions, the free energy change of the cluster growing from size N
to N+ 1 is given by:

∆G = −kbT ln ZN+1

ZN

= −kbT ln
∑
j ZN+1,j∑
i ZN,i

,
(4.14)

where i is the index of structures for cluster at size N and j is the one for cluster
at size N+ 1. For convenience, we name cluster of size N as "parent" and cluster
of size N+ 1 as "child". And each child structure j grows from the corresponding
parent structure jparent. Then the Eq. 4.14 can be rewritten as:

∆G = −kbT ln
∑
j

ZN,jparent∑
i ZN,i

ZN+1,j

ZN,jparent
, (4.15)

The first term ZN,jparent/
∑
i ZN,i in the summation is the probability of structure

jparent among all parent structures for the cluster of size N:

PN,jparent =
ZN,jparent∑

i ZN,i
(4.16)

And the second term ZN+1,j/ZN,jparent gives the free energy change for the specific
parent cluster jparent growing into the specific child cluster j:

∆G(jparent → j) = −kbT ln ZN+1,j

ZN,jparent
(4.17)

Now, the overall nucleation free energy can be expressed in terms of the nucleation
free energy of each graph structure:

∆G = −kbT ln
∑
j

PN,jparentexp[−β∆G(j
parent → j)] (4.18)

To estimate ∆G(jparent → j), for each jparent cluster, we introduce a fictitious
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state (denoted as N + 1 ′, jparent) where an additional non-interacting atom is
attached to the cluster and the corresponding partition function can be written as:

ZN+1 ′,jparent =
1

(N+ 1)!Λ3(N+1)

∫
jparent

dr3(N+1)e−βU(r3N)w̃(r3(N+1)) (4.19)

The energy U is calculated over N interacting particles. Notice here the cluster
criterion for this state is different than the criterion we use to define clusters of
size N+1 and we use w̃ instead of w to denote the weight function. This criterion
requires theN real particles from structure jparent to satisfy the commonly defined
criterion for cluster of sizeN and the additionalN+1th ghost particle to be attached
to them. With this intermediate state, we can expand Eq. 4.17 as:

∆G(jparent → j) = −kbT ln ZN+1 ′,jparent

ZN,jparent

ZN+1,j

ZN+1 ′,jparent
(4.20)

For the first term inside the natural logarithm, we define the the effective volume
for structure jparent as:

Veffjparent =

∫
jparent

dr3(N+1)e−βU(r3N)w̃(r3(N+1))∫
jparent

dr3Ne−βU(r3N)w(r3N)
(4.21)

Then the term ZN+1 ′,jparent/ZN,jparent can be expressed as

ZN+1 ′,jparent

ZN,jparent
=

Veffjparent

(N+ 1)Λ3 (4.22)
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The second term ZN+1,j/ZN+1 ′,jparent can also be expanded as follows:

ZN+1,j

ZN+1 ′,jparent
=

∫
j
dr3(N+1)e−βU(r3(N+1))w(r3(N+1))∫

jparent
dr3(N+1)e−βU(r3N)w̃(r3(N+1))

=

∫
j
dr3(N+1)e−βU(r3N))w̃(r3(N+1))∫

jparent
dr3(N+1)e−βU(r3N)w̃(r3(N+1))

×
∫
j
dr3(N+1)e−βU(r3(N+1))w(r3(N+1))∫
j
dr3(N+1)e−βU(r3N)w̃(r3(N+1))

,

(4.23)

where the introduced integral represents a sub-ensemble of the intermediate state
N+ 1 ′, jparent. In this sub-ensemble, the ghost particle is restricted in a sub-region
to make the cluster of size N+1 form child structure j. Therefore the first fraction in
the above expression is in fact the probability of the selecting structure j among
all the child structures of parent jparent. Since the new inserted particle is a non-
interacting one, the probability of selecting j is the volume fraction for the ghost
atom to form structure j and here we denote it as Pj. The second faction in the above
expression can also be further expanded with a new phase integral for a cluster
which consists of N+1 real particles and satisfies the cluster criterion corresponding
to weight function w̃:∫

j
dr3(N+1)e−βU(r3(N+1))w(r3(N+1))∫
j
dr3(N+1)e−βU(r3N)w̃(r3(N+1))

=

∫
j
dr3(N+1)e−βU(r3(N+1))w̃(r3(N+1))∫
j
dr3(N+1)e−βU(r3N)w̃(r3(N+1))

×
∫
j
dr3(N+1)e−βU(r3(N+1))w(r3(N+1))∫
j
dr3(N+1)e−βU(r3(N+1))w̃(r3(N+1))

(4.24)

The first fraction in the right-hand side is the free energy change of turning on the
interaction of the ghost particle:

< e−β∆U >j,N+1′ =

∫
j
dr3(N+1)e−βU(r3(N+1))w̃(r3(N+1))∫
j
dr3(N+1)e−βU(r3(N+1))w̃(r3(N+1))

(4.25)
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This value can be obtained through thermodynamic integration or other free energy
calculation methods. Since the sampling is restricted in the specific structure j,
with appropriate restraints, the free energy can be easily calculated with unbiased
simulation. And the second fraction in Eq. 4.24 can be written as :

∫
j
dr3(N+1)e−βU(r3(N+1))w(r3(N+1))∫
j
dr3(N+1)e−βU(r3(N+1))w̃(r3(N+1))

=

∫
j
dr3(N+1)e−βU(r3(N+1))w̃(r3(N+1))w(r3(N+1))

w̃(r3(N+1))∫
j
dr3(N+1)e−βU(r3(N+1))w̃(r3(N+1))

=

〈
w(r3(N+1))

w̃(r3(N+1))

〉
j,w̃

≡ Mj

(4.26)

This is the ratio between weight function w̃ and w, and we denote it as Mj. The
ratioM can be obtained through the analysis of the cluster structure j. With those
definition, the free energy change ∆G(jparent → j) can be eventually expressed as:

∆G(jparent → j) = −kbT ln
Veffjparent

(N+ 1)Λ3Pj< e
−β∆U >j,N+1′Mj (4.27)

and Eq. 4.14 can be rewritten as:

∆G = −kbT ln
∑
j

PN,jparent
Veffjparent

(N+ 1)Λ3Pj< e
−β∆U >j,N+1′Mj (4.28)

The summation in the above equation is over all child structure j s and we can replace
it by

∑
jparent

∑
j∈jparent . Doing that implicitly requires that the child structure j can

only grow from one specific parent structure jparent. If we consider all particles are
indistinguishable in structure j, this assumption seems invalid because by inserting
the new particle into different locations, the same child structure j can be generated
from multiple different parent structures. However, in actual simulation, particles
are distinguishable and structure j can be considered as one specific permutation
of some indistinguishable structure, and it can only grow from one specific parent
permutation jparent. Therefore the above assumption is indeed satisfied in the
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actual simulation. By replacing the summation, the free energy can be expressed
as:

∆G = −kbT ln
∑
jparent

PN,jparent
Veffjparent

(N+ 1)Λ3

∑
j∈jparent

Pj< e
−β∆U >j,N+1′Mj

(4.29)
With Eq. 4.29, we can design a full procedure to calculate ∆G for sizeN toN+1:

(i) Select a number of parent structures according to their equilibrium probability
PN,jparent . This probability can be calculated by the free energy of structure jparent

from previous step of inserting the Nth particle. (ii) For each parent structure
jparent, calculate the corresponding effective volume Veffjparent . The details for cal-
culating effective volume will be explained in Section 4.3.1.1. (iii) Select the child
structure j from all child structures of parent jparent. The corresponding proba-
bility is the volume fraction for the new particle to form structure j. Thus we can
uniformly sample a random position for the N+ 1th particle in the region defined
by Veffjparent and determine the child structure j accordingly. (iv) Restrain the cluster
within structure j and turn on the interaction of the ghost atom to obtain the free
energy change using TI or other free energy calculation methods. (v) Calculate
ratio M for structure j. The details will be explained in Section 4.3.1.2. (vi) Calculate
the free energy change for the growth of each child structure by

∆G(jparent → j) = −kbT ln
Veffjparent

(N+ 1)Λ3< e
−β∆U >j,N+1′Mj. (4.30)

And the free energy will be used to estimated PN+1,jparent for the next insertion
step. It should be noticed here for the current step, the parent clusters have already
been selected according to equilibrium distribution. Therefore, the equilibrium
distribution of children only depends on∆G(jparent → j) from the current step and
not other steps before the current step. (vii) Calculate the∆G by taking exponential
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average of all ∆G(jparent → j)s according to Eq. 4.29:

∆G = −kbT ln 1
n

n∑
j=1

exp(−β∆G(jparent → j)), (4.31)

where n is the number of parallel simulations we launch for each step of nucleation.
It should be noticed here, since we select parent clusters according to its Boltz-
mann distribution and select children according to volume fraction, the probability
PN,jparent and Pj are not explicitly expressed in Eq.4.30 and Eq. 4.31 but rather
presented implicitly in the bias used in the selection of the parent and child clusters.

4.3.1.1 Volume Contribution

Accurately calculating Veffjparent is essential for free energy calculation. Unlike the
effective volume defined in previous section, Veffjparent here can be calculated by
numerical Monte Carlo efficiently.

In Eq. 4.21, the effective volume is defined as the ratio of two phase integrals.
In the numerator, w̃ inside the integrand is the weight function corresponding to
the requirement that N real particles satisfy the cluster criterion of size N and the
ghost particle is attached to them to keep total N + 1 particles satisfy the cluster
criterion of size N+ 1. Thus, Eq. 4.21 can be rewritten as:

Veffjparent =

∫
jparent

dr3Ne−βU(r3N)w(r3N)dr3w(r3(N+1))∫
jparent

dr3Ne−βU(r3N)w(r3N)

=

∫
jparent

dr3w(r3(N+1))
∣∣w(r3N), jparent

(4.32)

And the effective volume is actually the volume the ghost particle can take to still
keep the cluster criterion satisfied. We can obtain this volume by numerical Monte
Carlo through the following procedure: We launch a number of trial insertions into
the simulation system. For each random insertion, we check the cluster criterion
and consider the insertion as a successful one if it is satisfied. The effective volume
is given by the product of the total volume and the ratio of successful insertions.
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Figure 4.3: The illustration of missing permutations during the step-by-step nucle-
ation.

In the case that the cluster still has relative flexibility within graph structure j, we
need couple numeric Monte Carlo with MD simulations.

4.3.1.2 Estimate Ratio M

In previous derivation, we consider each graph structure j corresponding to a
specific permutation to establish the relationship between parent and child clusters.
But some permutations cannot be generated through the step-by-step particle
attachment as illustrated in Figure 4.3. For a linear structure of 3 particles, the
permutation A can be created by attaching the new atom (the yellow particle in
Figure 4.3) to a cluster of size 2. But permutation B cannot be generated since its
"parent" is not a well-defined cluster. To correctly describe the equilibrium phase
space, we need to account for the contribution of such missing permutations. In
that sense, ratio Mj defined in Eq. 4.26 is not related to the specific permutation
that j corresponds to. Instead, it is a property of the general graph structure behind
permutation j. In another word, the value of M is universal for all permutations of
a defined graph.
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In Eq. 4.26, we expressedMj as the ratio between weight functionw(N+ 1) and
w̃(N+1) for the general graph j corresponds to. The numerator indicates that as long
asN+ 1 particles satisfy the cluster criterion, the cluster can be generated from any
parent cluster or non-cluster structure. While the denominator requires the cluster
to only grow from a "qualified" parent cluster. To account for the permutations
missed in weight function w̃(N+ 1), we introduced ratio M and estimated this ratio
through a detailed structural analysis: For N+ 1 particles in structure j, every time
we do a trial deletion to remove one of them and check whether the remaining
N particles satisfy the cluster criterion. Consider it as a successful deletion if the
cluster is not broken by deletion and the ratio of successful trials is the multiplicative
inverse ofMj. For systems where the phase space defined by each graph is relatively
extensive, we need to couple this approach with MD simulations.

4.3.1.3 Biasing Strategy

In the original approach, we select parent clusters according to the Boltzmann
distribution and select the child clusters depending on volume fraction. This
sampling strategy works for simple models, but may fail in a strong-interaction
system.

Selecting parent clusters according to Boltzmann distribution helps us bias
more computing resources on preferred configurations. But for strong-interaction
system, within limited number of samplings from Boltzmann distribution, high-
energy parent configurations may not be selected for even once. However, those
unstable parent configurations may lead to stable child structures and also make
significant contributions in the free energy calculation. For this reason, bias should
be considered on unstable parent structures to guarantee they are also sampled
during the parent selection. One possible way to add such bias is to increase the
temperature in the Boltzmann factor.

In child selection, we uniformly choose the position for the new inserted particle
and most of the insertion will end up in unpreferred sites. Within limited simula-
tions, we may not be able to generate the stable child structure. So when inserting
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the N+ 1th particle, we need to bias on preferred positions with prior knowledge
such as coordination number or electronic site potential[89].

Suppose we select the parent structure based on biased probability P̃N,jparent

and select the child structure with probability P̃j, the Eq. 4.30 needs to be rewritten
as:

∆G(jparent → j) = −kbT ln PN,jparent

P̃N,jparent

Veffjparent

(N+ 1)Λ3
Pj

P̃j
< e−β∆U >j,N+1′Mj.

(4.33)
to include the reweighting factors and Eq. 4.31 also needs to be adapted accordingly.

4.3.2 Results: Nucleation in Lattice Model

4.3.2.1 Lattice Model in Vapor

Lattice model serves as a perfect model system for validating the graph-based
methodology. Despite its simplicity, it is a powerful model to describe the ordered
crystal structure. Also, the clusters in lattice model can be easily categorized
into distinct graph structures with each graph corresponding to a specific particle
arrangement. This automatically satisfies the assumption we made in Eq. 4.11 that
the phase space of the cluster consists of several representative structures.

Here we took a 10×10 two-dimensional lattice model system with PBCs applied.
Particles in the lattice only interact with their nearest neighbors. And two particles
occupying the same lattice site is not allowed. For clusters in the lattice model,
the cluster criterion is adapted from Stillinger’s definition, whereby only nearest
neighbors are considered belong to a cluster. The cluster size was sampled from
1 to 9 which is limited by the system size. Two systems with different interaction
parameters (1 kbT/20 kbT) for nearest neighbors were considered and thermal de
Broglie wavelength was chosen as 3.16 and 2.24× 103, respectively.

The benchmark data is generated by GCMC. Only insertion and deletion steps
were applied. Both moves were only considered to be acceptable when the cluster
criterion was satisfied. Four replicate simulations were carried out in conjunction
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with 107 MC steps in each. For the system with the interaction parameter of 20 kbT ,
Wang-Landau sampling was employed until the Wang-Landau factor converges to
10−3.

In the graph-based simulation, no translational or rotational MC moves was
employed for lattice model to avoid the sampling across different graph structures.
Cluster size was sampled from 1 to 9 through 8 steps. For each step, 400 parent struc-
tures were selected from the ending configurations of the previous step according
to Boltzmann distribution (except for size 1, the cluster is just one particle). Since no
structural sampling was employed for the growth of each individual structure, both
effective volume Vjparent and free energy change < e−β∆U >j,N+1′ can be directly
calculated. Vjparent was easily estimated as the number of empty neighboring sites
around the parent structure. A random position among those neighbouring sites
was selected for the insertion of the N+ 1th particle and the corresponding energy
change is the value for < e−β∆U >j,N+1′ . After insertion, ratio M was calculated
and the free energy for each child was generated for next insertion. Four replicate
simulations were carried out for each system.

To further improve the accuracy, for the system with the interaction parameter
of 1 kbT , simulations were also carried out with 4000 individual growths for each
cluster size. For the system with the interaction parameter of 20 kbT , simulations
with different biasing strategies were also carried out to enhance the sampling.
In this simulation, parent clusters were selected by exp(ln PN,jparent/10) instead
of unbiased PN,jparent from Boltzmann distribution to favor high energy parent
clusters. In child selection, the probability is weighted by 10cn where cn stands for
coordination number of this position to guarantee the stable child structures were
selected. Both biases were reweighted afterwards.

For lattice model with an interaction parameter of 1 kbT , the results predicted
by graph-based approach are shown in the Figure 4.4. With 400 individual graph-
dependent growths calculated for each cluster size, the new graph-based approach
well reproduce the results from GCMC with a ∼0.1 kbT uncertainty. We believe
this uncertainty comes from the inaccurate description for the equilibrium cluster
structure distribution. Since there is no configurational sampling, each distinct
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Figure 4.4: Free energy surface of the nucleation in lattice model with an interaction
parameter of 1 kbT . The red curve is the reference free energy surface calculated by
GCMC. The green circles correspond to free energies predicted by our graph-based
approach with 400 individual growths for each cluster size. The blues triangles
represent results with 4000 individual growths for each cluster size.

particle arrangement of the cluster should be considered as a representative graph
structure. And for weak-interaction system, all those representative structures
share similar energies and the corresponding contributions deserve to be accurately
described. However, during each nucleation step, 400 sampled parent structures
may not able to accurately reflect the actual Boltzmann distribution for those many
representative structures. And this type of error is accumulated during the entire
simulation.

To solve this problem, we simply increased the number of sampled parent struc-
tures to 4000 and the corresponding standard deviation of the free energy surface
dropped to 0.008 kbT . This value is smaller than the standard deviation ( 0.02
kbT) from the results predicted by GCMC. Considering there were 107 MC moves
in each GCMC simulation, which requires 107 energy calculation, our approach
provides a significant improvement in efficiency by only conducting 32000 energy
calculations.
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Since most electrolytes are strongly interacted, to better mimic those systems,
we also investigated nucleation in lattice model with a high interaction parameter
(20 kbT). The results are shown in Figure 4.5. Green circles represent free energy
surface obtained from unbiased sampling, in which 400 parent structures were
sampled from Boltzmann distribution and insertion positions of new particles were
uniformly selected. Unlike weak-interaction system, the results given by unbiased
graph-based method are systematically higher than the benchmark data predicted
by GCMC. We can understand this discrepancy by tracking the evolution of the
cluster. Because the interaction between nearest neighbours is 20 kbT , at each
cluster size, the energetically unfavored configurations have at least 20 kbT higher
energy compared to stable ones, which leads to 5 × 108 times less probability
in Boltzmann distribution. In practical, with limited number of samplings, such
structures will never be selected as parent structures for the next nucleation step.
And the evolution of the cluster is dominated by a few paths in which the child
cluster always grows from the most stable parent cluster. This also explains the
small uncertainty in the results since only a few paths were sampled. Although
such unstable configurations do not make significant contributions in free energy
calculation of the current cluster size and can be safely ignored. But by ignoring
those configurations, we also eliminate possible evolution paths which lead to stable
configurations in later nucleation steps. Thus in later steps, even the probability of
the energetically stable configurations can not be accurately calculated.
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Figure 4.5: Free energy surface of the nucleation in lattice model with an interaction
parameter of 20 kbT . The red curve is the reference free energy surface calculated
by GCMC. The green circles correspond to free energies predicted by our graph-
based approach without bias. The blues triangles represent results predicted by
our graph-based approach with bias.

To address this problem, we adopted biasing methods in selecting parent clus-
ters and child clusters. For sampling parent structures, we selected the structure
according to exp(ln PN,jparent/10) instead of Boltzmann probability PN,jparent . This
bias equivalently increases the temperature of the system by 10 times and makes
high-energy configurations more probable. In addition, we also added bias in
selecting insertion positions to prefer stable child structures. This bias may not
be necessary here but would benefit the simulation for complicated system where
generating a stable configuration is a rare event. The corresponding results of the
biased method are presented as blue triangles in Figure 4.5 and well reproduce the
results from GCMC simulation.

4.3.2.2 Lattice Model in Solvents

In th previous section, the correctness of the graph-based approach was validated
by simple lattice model with no explicit solvent considered. And the free energies
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were simply energies. To be more analogous to the realistic case, in this section, we
include explicit solvents in lattice model to address the solvent effects. And accord-
ingly, the free energies are estimated through samplings over solvent configurations.
Same lattice model from the previous section was adopted here. In addition, there
were 30 solvent particles randomly positioned in the lattice. The interaction pa-
rameters were chosen as 1, 0.5 and 0.5 kbT for solute-solute, solute-solvent and
solvent-solvent interactions. Thermal de Broglie wavelength was chosen as 3.16.

The benchmark data is generated by GCMC. In addition to insertion and deletion
moves, a translational MC move for solvent particles was also employed. In this
move, a trial displacement is generated for a random solvent particle and the energy
change is used to determine whether to accept this move. In each GCMC simulation,
107 insertion and deletion moves were carried out for the cluster and each followed
by 30 translational moves for the solvents.

In the graph-based simulation, most simulation parameters and procedures
were inherited from previous section (400 parent structures were selected for each
step from Boltzmann distribution and no other bias was employed). The only
difference is in the estimation of term < e−β∆U >j,N+1′ . Although no translational
or rotational MC moves was employed for solute particles, sampling over solvent
configurations is still required. Thus, term < e−β∆U >j,N+1′ cannot be simply cal-
culated by energy change anymore. Here, we employed free energy perturbation
(FEP)[99] for evaluating this term. And in each FEP, 1000 samplings of energy
change ∆Uwere carried out and each followed by 30 translational MC moves for
solvent particles. The results are shown in Figure 4.6
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Figure 4.6: Free energy surface of the nucleation in lattice model with explicit
solvents. The red curve is the reference free energy surface calculated by GCMC. The
green circles correspond to free energies predicted by our graph-based approach.

Even with explicit solvents, our approach is still able to reproduce the free
energy results from GCMC. The uncertainty is same with the uncertainty from the
simulation without explicit solvent. Thus we believe this uncertainty is still from
the error accumulated in the distribution of cluster structures and can be reduced
by simply increasing the number of parent clusters sampled at each cluster size.

4.4 Understanding Graph-based Approach from
Jarzynski Equality

4.4.1 Theory

In the previous section, we derived the graph-based approach for modeling the nu-
cleation as in Eq. 4.29. However, this derivation indicates two strong requirements
which cannot always be satisfied in practical simulations. As in Eq .4.11, in order to
properly decompose the entire partition function into several components accord-
ing to the graph structures, we need to guarantee that the phase space defined by
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each graph structure does not overlap with others. This requirement can be easily
satisfied in a simple system like lattice model, in which each graph is defined as
the arrangement of the particles. And the overlap between phase spaces can be
avoided by freezing the degrees of freedom for the cluster. However, in a practical
atomistic system, totally freezing the movement of the cluster with sampling only
over solvent degrees of freedom is unrealistic. Therefore, a proper definition of the
graph is essential. If the graph structure is defined rigorously, the corresponding
phase space for each graph will be limited and overlap can be avoided. But rigor-
ous definition generates immense representative graph structures which require
a significant amount of computing resources to calculate the free energies for all
of them. However, if we employ a relatively relaxed definition, the non-overlap
requirement will be violated considering the extensive phase space for each graph.

In addition to the above requirement, we also implicitly assume that the sub-
ensemble defined by each graph structure can be effectively sampled. Otherwise,
the free energy obtained for each structure as in Eq .4.30 is not an accurate equilib-
rium free energy and cannot be used to determine the Boltzmann distribution. This
assumption may be valid for a limited sub-ensemble corresponding to a rigorously
defined graph, but it cannot be easily satisfied when a relaxed graph definition is
employed, in which each graph corresponds to an extensive phase space.

In this section, we provide another perspective from the Jarzynski Equality[92,
91] to understand this graph-based approach. With Jarzynski Equality, we can
prove that even the above two requirements are violated, our approach is still valid
by recovering the free energy from nonequilibrium process.

4.4.1.1 "Pruning" Method from Jarzynski Equality

It has been shown that for two thermodynamic states A and B, the irreversible
work performed on the system during the nonequilibrium process switching state
A to state B does not equal to the free energy difference, due to the lag developed
between the nonequilibrium phase space and the instantaneous equilibrium distri-
bution. And the average of irreversible works from an ensemble of nonequilibrium
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trajectories provides an upper bound for the free energy change as a result of
dissipation:

〈W〉 > ∆G, (4.34)

where W is the irreversible work and ∆G is the free energy change. Fortunately,
Jarzynaki has shown that in fact one can recover the free energy change by taking
the exponential average of nonequilibrium works:

〈
e−βW

〉
= e−β∆G, (4.35)

where the exponential average is taken from an ensemble of trajectories starting
from a canonical distributed initial conditions. This remarkable equation provides
an ingenious way to estimate equilibrium quantity in terms of nonequilibrium
measurements.

Now considering a three-states system with an initial state A, an ending state B
and an intermediate state C. A group of nonequilibrium trajectories are carried out
and the corresponding irreversible work for each trajectory is denoted asWi,A→B

where i is the index of the trajectory. Each trajectory from state A to state B can
be treated as a two-step process consists of trajectories of A→ C and C→ B, thus
Wi,A→B can be written as:

Wi,A→B = Wi,A→C + Wi,C→B (4.36)

According to Jarzynaki Equality, the free energy change from state A to B and A to
C can be written as:

∆GA→B = −
1
β

ln
∑
i

exp(−βWi,A→B)

∆GA→C = −
1
β

ln
∑
i

exp(−βWi,A→C)

(4.37)
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And ∆GC→B is given by:

∆GC→B = ∆GA→B − ∆GA→C

= −
1
β

ln
∑
i

exp(−βWi,A→C)∑
j exp(−βWj,A→C)

exp(−βWi,C→B)

= −
1
β

ln
∑
i

P̃i,A→Cexp(−βWi,C→B),

(4.38)

where

P̃i,A→C =
exp(−βWi,A→C)∑
j exp(−βWj,A→C)

. (4.39)

Therefore the free energy change from state C to B is the exponential average of
Wi,C→B weighted by probability P̃i,A→C. It is important to be noticed here, although
P̃ resembles the Boltzmann factor, it is determined by nonequilibrium works rather
than equilibrium free energies.

Eq. 4.38 gives no additional information if a sufficient number of irreversible
trajectories can be carried out from the initial state to the final state. However, for
energetically well-separated states, the required number of repetitions to obtain
converged free energy is prohibitively high.[98] Echeverria and her co-workers[88]
addressed this problem by segmenting nonequilibrium process into multiple com-
ponents with several intermediate states. But it requires for each intermediate state,
the canonical distribution can be recovered via equilibrium sampling, which is
not practically achievable for strong-interaction systems like crystals. Here, we
adopted the idea from Echeverria’s work and developed a "pruning" method to effi-
ciently sample well-separated states via Eq. 4.38 and without requiring equilibrium
samplings for intermediate states.

Considering two well-separated states A and B with m intermediate states
C1,C2 · · ·Cm, instead of carrying out nonequilibrium simulations directly from
state A to B, we first launch m1 simulations from A to C1 and the free energy
∆GA→C1 is given by Eq. 4.37. Next, from them1 trajectories, we selectm2 of them
based on the probability P̃i,A→C1 = exp(−βWi,A→C1)/

∑
j exp(−βWj,A→C1) and
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Figure 4.7: Schematic representation of the "pruning" method for a system with
three intermediate states. Solid lines represent the nonquilibrium trajectories.
Dashed lines are trajectories which are eliminated.

continue the simulation to reach state C2. According to Eq. 4.38, the free energy
∆GC1→C2 can be calculated by taking the exponential average of Wi,C1→C2 . We
repeat this procedure until final state B to get free energies for all states. Notice that
for selecting initial conditions at state Cn, the probability P̃i,A→Cn is given by the
normalized product of P̃i,A→Cn−1 and P̃i,Cn−1→Cn :

P̃i,A→Cn =
exp(−βWi,A→Cn)∑
j exp(−βWj,A→Cn)

=
exp(−βWi,A→Cn−1)exp(−βWi,Cn−1→Cn)∑
j exp(−βWj,A→Cn−1)exp(−βWj,Cn−1→Cn)

=
P̃i,A→Cn−1P̃i,Cn−1→Cn∑
j P̃j,A→Cn−1P̃j,Cn−1→Cn

(4.40)

Since the trajectories has been already weighted by P̃i,A→Cn−1 , at state Cn, we only
need to select trajectories based on P̃i,Cn−1→Cn which only depends on the work
done in the previous step.

By selecting trajectories according to the nonequilibrium work at intermediate
states, the above method tends to eliminate the trajectories which make trivia
contributions to the free energies of later states, and bias more on trajectories which
generate lower dissipation. Also, since two adjacent states are energetically similar,
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the number of nonequilibrium trajectories required to achieve a converged work
distribution is significantly reduced compared with the amount of repetitions
needed for direct switching between initial state and final state.

Note that we can also select trajectories according to other probability as long as
we reweight them at the end of simulation. Such probabilities vary for different
systems and should help us better prune the trajectories.

4.4.1.2 Graph-based Approach as A NonequilibriumMethod

Now we can consider our graph-based approach as an example of the above method.
In graph-based approach, we simulate the nucleation of a specific structure, which
is actually a nonequilibrium process considering that the system always lags behind
the equilibrium distribution which include all other structures in phase space. This
nonequilibrium process starts with cluster of size 1 and ends at maximum cluster
size, and cluster sizes in between are considered as intermediate states. The step-by-
step nucleation procedure represents an implementation of the "pruning" method
from Jarzynski Equality. In graph-based method, at each size N, we select parent
structures according the Boltzmann distribution to carry out the next insertion step
and the distribution is obtained by the free energy of each structure as in Eq .4.30.
In fact the structure-based free energy is a nonequilibrium work considering only
limited configurational sampling is carried out. And selecting parent structures
according to corresponding free energies is actually pruning trajectories based on
nonequilibrium works.

Notice here, the above idea requires Jarzynski Equality to be applied to grand
canonical ensemble. More specifically, the procedure of calculating∆G(jparent → j)

in Eq. 4.30 needs to obey Jarzynski Equality. The calculation of term< e−β∆U >j,N+1′

in Eq. 4.30 is in fact carried out in canonical ensemble or isothermal-isobaric en-
semble where Jarzynski Equality has been rigorously proved[91, 92, 97]. And
for effective volume and ratio M, the values are estimated by Monte Carlo. Since
Jarzynski has been proved in Monte Carlo simulation[91], we believe it can also
be applied for those two terms and eventually be applied in the calculation of
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∆G(jparent → j).
With the above point of view, some requirements of the graph-based method

are relaxed. Since we can view the phase space defined by each graph structure as
a phase space sampled in a nonequilibrium simulation, the non-overlap rule is no
longer required. And by treating the structure-based free energy as an irreversible
work, it is not necessary to estimate this value accurately through equilibrium
sampling. That is to say, we can employ a relaxed graph definition without enforcing
sufficient sampling over the relatively large phase space defined by each graph
structure. Without those requirements, we can simply extend this graph-based
method to realistic systems with arbitrary graph definitions. Or more practically,
we can define the phase space of a graph as the configurations can be sampled in a
limited-time simulation.

4.4.2 Results: Lattice Model and NaCl

4.4.2.1 Lattice model in Solvent with Nonequilibrium Sampling

We have developed a "pruning" method from Jarzynski Equality and consider
our graph-based simulation as an example of this nonequilibrium approach. To
validate this idea, we employed an explicit nonequilibrium step in the graph-based
simulation for lattice model and compared the results with the predictions from
GCMC. In addition to proving the above argument, for comparison, we also car-
ried out graph-dependent simulations directly from the initial state to the ending
state without pruning trajectories (selecting parent clusters) and applied Jarzynski
Equality to obtain the free energy surface. By comparing these results with results
from graph-based (pruning) method, we can verify the correctness of the "pruning"
method.

The same lattice model and simulation parameters from Section 4.3.2.2 was
adopted here. To include an explicit nonequilibrium step in the approach, a short
FEP simulation was adopted in the calculation of term < e−β∆U >j,N+1′ to prevent
fully equilibrating the solvent configuration. In each FEP, only 10 samplings of
energy change ∆U were carried out and each followed by 30 translational MC
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moves for solvent particles. And with this nonequilibrium sampling, even for the
same solute configuration, the uncertainty of the term < e−β∆U >j,N+1′ is ∼0.5 kbT
(compared with 0.04 kbT if 1000 energy samplings were carried out). Since we
allow a greater uncertainty in the calculation of nonequilibrium work, in order to
eventually obtain a converged free energy, at each cluster size, 1000 parent structures
were selected according to the probability defined in Eq. 4.39 and corresponding
simulations were carried out. The error bars were obtained by repeating the same
procedure for four times. For comparison, we also carried out 1000 nonequilibrium
trajectories directly from cluster size 1 to cluster size 9 without pruning trajectories
at intermediate states. The free energy surface was calculated using Jarzynski
Equality and error bars were generated from four duplicated simulations. The
results are shown in Figure 4.8.

Figure 4.8: Free energy surface of the nucleation in lattice model with explicit
solvents. The red curve is the reference free energy surface calculated by GCMC.
The blue triangles represent the free energies predicted by original Jarzynski Equal-
ity. The green circles correspond to free energies predicted by our graph-based
approach with nonequilibrium sampling employed.

With explicit nonequilibrium sampling employed, the graph-based method is
still able to predict the correct nucleation free energy surface. It indicates that we
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can safely treat this approach as a nonequilibrium approach from the point of view
of Jarzynski Equality. Also by comparing the results from graph-based method
with the predictions from original Jarzynski Equality, we can conclude that the
"pruning" method not only gives a correct free energy prediction, but also reduce
the uncertainty by ∼5 times (0.1 kbT vs 0.02 kbT) using the same computing cost.

4.4.2.2 NaCl Nucleation

To extend the graph-based approach to weak electrolyte systems with explicit
solvents, we benchmarked the approach via the low-solubility rock-salt model, com-
paring against results from our hybrid GCMC/MD approach. Since the rigorous
graph definition is not applicable for a realistic atomistic system, here we take the
perspective from Jarzynski Equality and treat each graph-based nucleation as a
nonequilibrium process. With this point of view, rigorous graph definition is not
necessarily required and the restraints to form a such specific graph is also no longer
needed. But we can still give a relaxed graph definition and consider the approach
in a graph-based manner. In the following simulations, no graph-related restraints
is established on the cluster except MST restraints to help enforce the cluster crite-
rion. Therefore each limited-time nonequilibrium simulation will automatically
explore a sub-ensemble which contains one or more cluster structures. We can
define all structures corresponding to each sub-ensemble as a graph and describe
the nonequlibrium simulation in the language of the graph-based approach. Notice
here, we make the above argument only to make the simulation correspond to the
graph-based method. Alternatively, we can simply consider it as nonequilibrium
simulation that samples (in a finite amount of time) a limited sub-ensemble.

The same rock-salt model and parameters were adopted here from Chapter 3
and MD simulations of time step 2 fs were carried out. In all simulations, PBCs
were employed with LJ cutoff of 1.5 nm. No long-range corrections were considered.
Particle mesh Ewald(PME) were carried out for Coulomb interactions. Temperature
was chosen at room temperature (298.15K), enforced using a Langevin thermostat.
The pressure was fixed at 1 atm using a Monte Carlo barostat. The Stillinger’s
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cluster criterion was chosen at 0.35 nm and enforced by MST restraints. Only
connections between cations and anions were considered. The MST restraints were
updated every 200 fs according to the adjacency matrix to avoid artificial effects
on the cluster. A total of 2500 water molecules were positioned around the NaCl
cluster. The insertion of cations and anions are implemented as separate steps with
cations inserted first. The cluster size for ion pairs was sampled from 1 to 17. At
each intermediate state (including the states with an additional cation), 160 parent
clusters were selected from the ending conditions of previous trajectories and the
child configurations are generated accordingly by attaching a new cation/anion.

In order to prevent eliminating parent clusters which may lead to non-trivial
contributions in later step, instead of based on probability P̃i as defined in Eq. 4.39,
we sampled parent clusters according to a weighted probability P̃ ′i. In the early
stage of nucleation (cluster size < 7), it is necessary to include all parent clusters
including the ones corresponding to trajectories with large nonequilibrium works.
Therefore we employed a bias which can be expressed as:

P̃ ′i =
exp[3 ln P̃i/ ln (P̃max/P̃min)]∑
j exp[3 ln P̃j/ ln (P̃max/P̃min)]

, (4.41)

Where P̃max is the largest probability among P̃i for all indices i and P̃min is the
smallest one. By employing this bias, with 160 samplings, the least probable parent
structure can still be sampled. When the cluster size is relatively large (> 7), some
of the trajectories accumulate much more work than others and are probably not
going to make any significant contributions to the later states. In such cases, we
chose bias as:

P̃ ′i =
exp(ln P̃i/2)∑
i exp(ln P̃i/2)

, (4.42)

which simply doubles the temperature in Boltzmann factor. This increases the
probability of selecting higher energy parent clusters relative to a standard canonical
distribution. The corresponding reweighting factor P̃i/P̃ ′i was included in the
calculation of the free energy and also carried out to the probability estimation for
the next step.
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For each selected parent cluster, we estimated the effective volume by carrying
out numerical Monte Carlo coupled with MD simulations. 200 ps simulation was
carried out for each parent cluster and the configuration was sampled every 200
fs. For each sampled configuration, 10 trial insertions were generated into a region
around the cluster. The region was defined as a sphere which centered at the center-
of-mass of the cluster. The radius of the sphere was calculated as 0.35 nm (from
Stillinger’s cluser criterion) plus 1.3 times maximum radius of the parent cluster
where the maximum radius was estimated over all 160 parent clusters generated
from the previous step.

Among all the qualified child configurations generated in volume estimation,
we could randomly choose one as the candidate child. But when the size of the
cluster gets larger, randomly picking one insertion site would probably lead to an
unfavorable child cluster structure. For this reason, we weighted the qualified child
configurations based on their minimized energy. For each configuration, we turned
on the interaction of the inserted cation/anion, removed all water molecules and
minimized the energy of the cluster by optimizing the positions of ions. We ranked
all configurations by the minimized energy and abandoned 5% most energetically
unfavorable configurations. For the rest configurations, we calculated the energy
difference ∆E between highest energy and lowest energy, and each configuration
was weighted by

Pi =
exp(−3βEi/∆E)∑
j exp(−3βEj/∆E)

(4.43)

After selecting the child configuration, the corresponding reweighting factor was
employed in free energy calculation and inherited to the next nucleation step.

Corresponding to term< e−β∆U >j,N+1′ in Eq. 4.30, the nonequilibrium work of
turning on the interaction of the inserted cation/anion was calculated by TI. During
each TI, the LJ interaction was switched on first using a soft-core potential followed
by the initiation of the Coulomb interaction. For each interaction, 10 λ values were
chosen from Gaussian quadrature on 0 to 1. After the system switched to a new λ

value, a 20 ps simulation was carried out to equilibrate the system followed by a 50
ps sampling (for LJ interaction) or 100 ps (for Coulomb interaction). The energy
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derivative was sampled every 200 fs. To be noticed here, during the simulation, MST
restraints were updated without including the new ion. To prevent the new ion
moving apart from the cluster, a soft-wall potential defined in Eq. 2.24 was created
between the inserted cation/anion and closest anion/cation before the simulation.

For the estimation of ratio M, a 200 ps simulation was carried out for each child
cluster after fully turning on the interaction. The configuration was sampled every
200 fs. For each sampled cluster configuration, 10 trial deletions were generated
and the cluster criterion was rechecked. The results are shown in Figure 4.9. The
error bar for graph-based method was estimated by taking block average at each
cluster size with 4 blocks and 40 data points in each block.

Figure 4.9: Free energy surface of the nucleation in rock-salt model. The red curve
is the reference free energy surface calculated by the hybrid GCMC/MD approach.
The green triangles correspond to free energies predicted by our graph-based
approach.

The graph-based approach predicts a similar critical cluster size (11) and free
energy barrier (19.8 kJ/mol−1) with our hybrid GCMC/MD method (13, and 21.7
kJ/mol−1 respectively). And the corresponding nucleation rate difference is within
one order of magnitude. At all other cluster sizes less 16, the difference in free
energy is less than 1.5 kbT. Considering both methods have significant error bars,



93

the agreement between two approaches is great. We noticed that beyond size 15,
the graph-based method cannot predict a rapidly decreasing free energy anymore.
That is because when cluster size is large, it is difficult to explore all child structures
and find the most preferred configuration, especially when only 160 children are
considered. Without including the stable structures, the estimated free energy
will be much higher. Another possible explanation for this discrepancy is that the
error accumulated during the trajectory pruning becomes non-trivial when the
graph-based method proceeds to larger cluster sizes. And we hope to address those
issues by migrating our program to a high throughput implementation and carry
out more than 160 graph-dependent simulations for each cluster size with high
throughput computing in the future.

4.5 conclusion
In this chapter, we presented a graph-based simulation approach which allows us
to efficiently simulate the nucleation associated with polymorphism. This method
addresses the sampling challenges from polymorphism by distributing the phase
space into multiple parallel nonequilibrium samplings and benefits from high
throughput computing. Using this approach, we examined the free energy surface
and associated barriers for the nucleation in lattice model and found excellent agree-
ment with the prediction from GCMC. We also extended this graph-based approach
to low-solubility materials/weak electrolyte with Jarzynski Equality and well repro-
duced the results from the previous hybrid GCMC/MD approach. We anticipate
that this approach can be easily extended to study other weak electrolytes/low-
solubility materials, such as calcium carbonate and lithium fluoride, and can be
applied to biomineralization and synthesis of crystalline materials.
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5 conclusion and future directions

In this dissertation, we have presented two methodologies for simulating the nucle-
ation of weak electrolytes with explicit solvents. With appropriately addressing
the challenges of dilute systems, mass transport and ineffective sampling, our
approaches successfully modeled nucleations in LJ system, lattice model and low-
solubility rock-salt electrolyte. Since those challenges are common in solution-phase
nucleation, the approaches developed herein can be extended to a wide range of
physical systems, such as CaCO3 and MOFs. However, there remain some issues
that we hope to address in future work.

In Chapter 4, we utilized the graph-based method to predict the nucleation
free energy for low-solubility rock-salt model, but at certain cluster size, the free
energy cannot be accurately estimated due to the error accumulated during the
trajectory pruning and the limited probability to find stable configurations. And
we believe this problem can be solved by designing better biasing strategies and
also increasing number of trajectories carried out at each cluster size. Therefore
currently we are migrating the program to a high throughput implementation.
With more computing power, we anticipate the predicted nucleation free energy
surface from graph-based method can be extended to larger cluster sizes. Also, due
to the strong interactions associated with the current low-solubility weak-electrolyte
model, the uncertainty of the predicted results for this model is relatively large. For
this reason, we plan to further validate this method against a simpler model with
smaller charges and obtain relative accurate data to verify this method.

Also in Chapter 4, we developed a trajectory-pruning method based on Jarzyn-
ski Equality and benchmarked it on the nucleation of lattice model. The results
indicate this method improves the accuracy of the original Jarzynski Equality with
the same computing cost. But more importantly, for the free energy difference be-
tween two well-separated states, whose estimation usually requires a prohibitively
high number of nonequilibirium trajectories using original Jarzynski Equality, this
"pruning" method provides a much more affordable way to predict the value by
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abandoning trajectories with trivial contributions at intermediate states. To validate
this argument, a systematic study of this method is necessary, and more practi-
cal systems other than lattice model are required. Since this method is a general
approach derived from Jarzynski Equality without any further assumptions, we
anticipate a wide range of applications for this method in addition to nucleation.

Another possible improvement of the trajectory-pruning method is to recover
the equilibrium distribution at the intermediate states. In the original graph-based
approach derived in Section 4.3, the equilibrium distribution can be recovered
from individual graph-dependent simulations via Boltzmann factor. But once
we consider the graph-dependent simulations as trajectory-pruning simulations,
the corresponding weight factor will be calculated by irreversible work and no
longer considered as Boltzmann factor. Whether we can recover the equilibrium
distribution from nonequilibrium simulations requires further theoretical study.
Note here, successful demonstration of the above argument would give us access to
other information in addition to the free energy. As in the case of our graph-based
method, obtaining the accurate distribution of the cluster configurations is essential
for structural analysis.

Assuming the above challenges can be addressed. Our next goal is to understand
the nucleation of CaCO3. Despite its widely appearance in geological deposition,
biomineralization and marine sedimentation, details of the early-stage nucleation is
often lacking, as both classical and nonclassical mechanisms have been utilized to de-
scribe the process.[104, 100, 102, 103, 101] Other than its unpredictable mechanism,
the nucleation of CaCO3 also presents more challenges for molecular simulation
comparing to simple rock-salt model due to the high charge density, complex ion
structure and potential polymorphism. A proper forcefield which can accurately
describe multiple polymorphs and cluster-water interfaces is required. In addition
to the forcefield, to employ the hybrid GCMC/MD and graph-based approach, a
strategy of gradually introducing complex ions into the system is also necessary. In
fact, hybrid GCMC/MD approach has been tested on the CaCO3 nucleation, but
due to the inability to address the challenge from the ineffective configurational
sampling, the simulation cost is prohibitively high. Therefore, with appropriate
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handling of this concern, we anticipate the graph-based method can effectively
generate meaningful results.

Finally, we are interested in extending these simulation strategies to the nu-
cleation of MOFs. Successful synthesis of promising MOF structures often relies
on detailed control of solvent(s), temperature, supersaturation, or myriad other
parameters. But the lack of atomistic understanding for MOF nucleation presents
significant obstacles to adjust those experimental conditions. With the ability to
simulate solution-phase nucleation, we expect that our methodologies are able
to give a quantitative prediction for MOF nucleation. Especially, the ability to
explicitly describe the solvents could allow our approaches to understand the
solvent-template effect on the formation of such porous structures. Notice here,
unlike the relative flexible structures for NaCl or CaCO3 nuclei which may contain
multiple morphologies, the structure of MOF nucleus is probably ordered as in
lattice model and does not have a strong flexibility. For this reason, we believe the
graph-based method can be easily applied to the nucleation of MOFs.

In summary, I list the possible future publications from the above work:

• With high throughput implementation of graph-based method, we hope
to further verify this method and this will lead to a publication about the
graph-based method development.

• We also plan to systematically study the trajectory-pruning method and apply
it to other systems. This will lead to a publication about the trajectory-pruning
method development.

• Later we will apply the graph-based method to the nucleation of MOFs/CaCO3

and work on corresponding publications.
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