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Today, over 2 billion people live in water-stressed or water-scarce countries. One possible 

way to mitigate water-related issues is through the exploration of untapped groundwater. Howbeit, 

spatially, not all groundwater is fresh; groundwater can sometimes be either brackish or saline. 

Here, groundwater in the form of brackish to saline can serve as an opportunity for hydrogeologists 

to study and further explore freshwater resources. This thesis develops an innovative way to 

identify the controlling mechanisms, occurrences, and origins of fresh groundwater surrounded by 

saline water within the Middle St. Johns watershed, Florida USA. In total eight conducive 

conditions for inland freshwater lens (IFL) formation were used as input parameters for inland 

freshwater lens potentiality mapping (IFLPM). High IFL potentiality is recognized in the 

southernmost part of the watershed deducing important formation mechanisms to recharge, 

confining layer thickness, elevation, precipitation, and lithology in the coastal aquifer system. 
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CHAPTER 1 

INTRODUCTION 

 

 In coastal settings, freshwater scarcity is well known (Yao et al., 2019) and is 

becoming a threat to the sustainable development of human society. With an increase in the local 

and global population, the dependency on groundwater for human and ecosystem survival will 

continue to increase. Populations living in coastal areas depend on groundwater for several reasons 

(Cellone, Tosi, and Carol, 2018). According to Mekonnen and Hoekstra (2016), the main driving 

forces of freshwater scarcity on a global level are an increasing world population, improving living 

standards, changing consumption patterns, and expansion of irrigated agriculture. Due to spatial 

and temporal variations of water demands, two-thirds of the global population (4 billion people) 

currently face severe water scarcity at least 1 month of the year (Mekonnen and Hoekstra 2016). 

Additionally, Vörösmarty et al., 2010 studies projected that nearly 80% of the world’s population 

is at high-level threat to freshwater scarcity because of human activities and the effects of climate 

change. Furthermore, there is an increasing need to balance all of the competing commercial 

demands on water resources so that communities have enough for their needs, especially since the 

economic growth in the commercial sector of the economy has far-exceed that in the residential 

and industrial sectors (Kim and McCuen, 1979).  

Groundwater is a key source of drinking water that is essential to life here on Earth, 

supplying approximately 60% of the world’s freshwater demands (Fetter, 2001). Groundwater is 

described as water in the saturated zone that fills the cracks or pore spaces of rock and mineral 
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grains below ground level. Groundwater exists in many geological formations and is more reliable 

than surface water because it is naturally protected from direct contamination by rock and sediment 

layers acting as natural filters below the water table. Surface waters are more prone to seasonal 

variation, pollution, and anthropogenic activities, making groundwater mapping preferable to 

fulfill water supply needs. Although, groundwater serves as a significant freshwater supply for 

coastal regions, spatially, not all groundwater is fresh; groundwater can either be fresh (Total 

Dissolved Solids (TDS)  < 1,000 ppm), brackish (TDS ranging between 1,000- 10,000 ppm), saline 

(TDS ranging between 10,000-35,000 ppm), or hypersaline (TDS > 35,000). Saline or hypersaline 

groundwater, here, serves as an opportunity for hydrogeologists to further study and explore 

freshwater resources to meet future water demands. It is the presence of saline and hypersaline 

groundwater on local and/or regional scales that typically salinize infiltrating freshwater forming 

a convex lens of fresh groundwater overlying the denser saline groundwater (Underwood, Peterson 

and Voss, 1992). The size and shape of the freshwater lenses are controlled by the geologic 

framework (e.g. porosity, permeability, hydraulic conductivity) and hydrodynamic processes 

(Schneider and Kruse, 2003). Identifying potential water resources in the form of freshwater lenses 

in coastal settings can be valuable to the growing population and future generations. 

 Freshwater lenses are common in coastal or island settings, where saline groundwater is 

derived from the sea (Werner and Laattoe, 2016; Wallis, Vacher and Stewart, 1991; Bugg and 

Lloyd, 1976; Stoeckl and Houben, 2012), but can also be found in inland or terrestrial settings due 

to the presence of remnant marine water and/or dissolution of evaporite deposits (Houben et al., 

2014; Rotz and Milewski, 2019; Milewski et al., 2014; Laattoe et al., 2017). There has been 

intensive amount of studies done to explore oceanic lens (Fetter 1972; Vacher 1988; Bear et al. 

2010; Werner et al. 2012), but the current understanding of inland freshwater lenses (IFLs) is still 
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limited. Recent discoveries of IFLs may be more widespread than previously thought (Houben et 

al., 2014; Werner and Laattoe, 2017; Chongo et al., 2015). One possible way to explore more of 

these unique valuable groundwater bodies is the identification of specific zones containing IFLs 

(e.g. Groundwater Potential Mapping (GPM)). GPM involves the exploitation of advanced remote 

sensing technologies based on data acquired from Geographic Information System (GIS). Most 

recently, machine learning models (e.g. boosted regression tree, classification and regression tree, 

random forest, etc.) have been integrating into GIS to produce groundwater potential maps 

(Naghibi and Pourghasemi, 2015). Application of these methods to the prediction of IFL potential 

zones is relatively new. Therefore, this research will create a simple GIS-based model and a 

random forest (RF) machine learning model integrated into the GIS-interface to produce an inland 

freshwater lens potential mapping (IFLPM) in a coastal aquifer system. 

In the United States, Florida is the seventh largest rapidly growing population state and is 

expected to continue growing in the future (Smith, 2005). The Florida Peninsula is composed of 

thick marine limestones and dolomites deposited during the Cretaceous (~ 138 to 63 m.y. ago) and 

Tertiary (~ 65 to 2.58 m.y. ago) geologic periods. Topographic features are derived from shoreline 

features that formed during the regression and transgression of the sea 2 m.y. ago (Phelps and 

Rohrer, 1987). Within the Middle St. Johns watershed, in the northeast Seminole county, there is 

a 15 mi2 isolated recharge area of the Floridan aquifer system that has formed a freshwater lens 

surrounded by saltwater. The Geneva “Bubble” lens, described as a true natural wonder, is roughly 

22 square miles in diameter, 350 feet thick in the center, and enclosed by a 25 feet land surface 

altitude (Phelps & Rohrer, 1987). Water coming from this lens supplies drinking water for roughly 

5,000 residents in Seminole county. There is considerable interest in additional development of 

the groundwater resources to serve the expanding needs of Geneva and its surrounding areas 
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because excessive freshwater withdrawal could induce the invasion of brackish water into 

freshwater production wells due to the limited size and recharge rate of the freshwater lens 

(Panday et al., 1993). Laattoe et al., 2017 conducted a study recognizing the different formation 

mechanisms that facilitated known IFLs globally. The authors deduced these formation 

mechanisms associated with ephemeral surface water bodies, continuously losing perennial 

surface water bodies, continuously gaining perennial surface water bodies, oceanic island 

analogue, focused rainfall recharge, and anthropogenic effects. Unlike these formation 

mechanisms, the Geneva lens is a result of its host aquifer—The Floridan aquifer system (FAS). 

The downward hydraulic gradient from the surficial aquifer to the Floridan aquifer system and the 

absence of thick clay layers have allowed local freshwater to flush out the connate saltwater from 

sediments (Panday et al., 1993; Phelps and Rohrer, 1987), forming this unique water body. This 

lens is recharged by infiltration through surficial aquifer through a region of increased vertical 

permeability.  

The major goal of this thesis is to identify favorable locations for inland freshwater lenses 

within the Middle St. Johns watershed using groundwater potential mapping. The objectives of 

this research are as followed:  

I. Create two predictive-based models to identify inland variable-density groundwater flow 

conditions in a highly urbanized watershed in a coastal aquifer. 

a. Models: 

• Simple Weight Overlay Index Analysis (WIOA) GIS model 

• Random Forest (RF) machine learning algorithm 

II. Apply spatial statistical models to quantify model performance and the impact each 

controlling factor has on IFLs formation mechanisms (e.g., ordinary least square (OLS), 
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geographically weighted regression (GWR), and area under the receiving operating 

characteristic curve (AUROC)). 

To achieve these objectives, a total of eight groundwater conditions that affect the IFL 

occurrence (e.g. elevation, confining layer thickness, lithology, land use and land cover, recharge 

mechanism, salinity, precipitation, and transmissivity) in Geneva were used as input parameters in 

all models. Furthermore, a comparative and statistical analysis of each IFL potential location was 

carried out in addition to identifying IFL formation parameter sensitivity. Finally, an intuitive 

software for complex geoelectrical inversion model was used to demonstrate electrical resistivity 

(ER) being a good tool to identify these untapped groundwaters in the field by demonstrating its 

ability to see a transition between fresh and saltwater. While IFLs cannot solve the problem of 

future water demands alone, they do provide drinking and agricultural water to indigenous people 

in remote areas and already serve as strategic and emergency water resources in many arid and 

hyper-arid lands (Kwarteng et al., 2000; Young et al., 2004). 

The following chapters will contain a literature review of inland freshwater lenses, as well 

as the differences in formation factor between oceanic and inland freshwater lens in coastal zones. 

Geologic history, land relief, hydrogeology and aquifer properties, and regional climate 

information in Seminole county where known IFL exists are inferred. In the methodology chapter, 

specific details about the derivation of input parameters to the processing involved in deriving the 

final groundwater potential map. Finally, I report the results of model outputs, discuss those results 

and sensitivities, and conclude with remarks and future recommendations for this research. 
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CHAPTER 2 

LITERATURE REVIEW 

 

Inland, saline groundwater occurs at shallow to intermediate depths due to the presence of 

remnant marine water, dissolution of evaporate deposits, and/or evapotranspiration of rainwater 

(Laattoe et al., 2017; Van Weert, 2009). Therefore, freshwater lens development is possible inland 

given the proper geological, geomorphological, and hydrogeological settings that support this 

mechanism. Figure 1 identifies saline groundwater occurrences globally as wells as its derivative 

at these shallow and intermediate depths (<500 m). Florida saline water at such shallow depth is 

the result of dense connate water (Van Weert, 2009). Although IFLs are less common than oceanic 

lenses, several scientific publications describe the existence of IFLs throughout the world. For 

instance,  a combination of geophysical surveys (Chongo et al., 2015; Viezzoli, Auken and 

Munday, 2009; Barrett et al., 2002), geochemical analyses (Langford, Rose and White, 2009), 

numerical modeling (Bauer et al., 2006; Rotz, Milewski and Rasmussen, 2020) and physical 

modeling (Rotz and Milewski, 2019) have been employed to understand existing IFLs morphology 

(i.e. length, width, saltwater interface). As agriculture and population demands increase, 

identifying settings conducive for these unique groundwater phenomena is imperative. Thus far, 

hydrogeologists have discovered IFLs in Paraguay (Houben et al., 2014), Australia (Werner and 

Laattoe, 2016), Zambia (Chongo et al., 2015), Botswana (Bauer et al., 2016), Kuwait (Parson’s 

Corporation, 1961; Milewski et al., 2014), New Mexico (Langford, Rose and White, 2009), 

Florida (Panday et al., 1993), and Pakistan (Asghar et al., 2002) using techniques previously stated. 
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However, occurrences, origins, and controlling factor of IFLs have not yet been attempted in a 

coastal setting. 

One-quarter of the global population lives in coastal regions, and continuously undergo an 

increase in population growth. Over pumping to meet these demands can lead to upconing, a 

resultant of small head gradients, high groundwater abstraction rates, and/or drain management of 

the landscape (Meyer, Engesgaard and Sonnenborg, 2019). Insight into the occurrence and 

sustainability of IFLs encourages water resources exploration and development in regions 

previously thought to contain no prospective new resources as well as information for water 

resource managers interested in water quality preservation and artificial aquifer recharge in the 

same regions. Previous studies done in the northeast part of Seminole Country, Florida, discovered 

fresh groundwater overlying brackish water in the Floridan aquifer. First studied in 1962, the 

Geneva lens formation was said to be related to recharge, piezometric head distribution, and land 

surface elevation (Barraclough, 1962). Post-Miocene to recent age sands formed an unconfined 

surficial aquifer, separated from the upper confining unit of the Floridan aquifer. Sedimentation 

and clay content vary with elevation in this area. On a topographic high, the area surrounding the 

Geneva lens has a thin clay layer which increases the vertical permeability, whereas, low lying 

areas have thicker clay units. A three-dimensional, density-dependent transport model shows that 

the lens is influenced by the saline water that discharges from the upper Floridan aquifer that the 

freshwater floats atop of (Panday et al., 1993).  

Drilling, hydrogeological tests, and geophysical models are commonly used for mapping 

groundwater potential zones. Although effective, these methods can be time consuming and 

expensive. Satellite remote sensing is a viable source of observations of land surface hydrologic 

fluxes and state variables, particularly in regions where in-situ networks are sparse. Over the last 
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10 years, the study of hydrology using remote sensing techniques has advanced greatly with the 

launch of satellite platforms and the development of more sophisticated retrieval algorithms. 

Precipitation, evapotranspiration, snow and ice, soil moisture, and terrestrial water storage 

variations are some variables in the land surface water that are now observable at varying spatial 

and temporal resolutions and accuracy via remote sensing (Tang et al., 2009). Together, GIS and 

remote sensing technologies have been used as spatial analyst tools in investigations spanning 

environmental (Hinton, 1996), natural hazards (Temesgen, Mohammed and Korme, 2001), and 

hydrologic studies (Elewa and Qaddah, 2011; Elbeih, 2015).  

 

2.1. GIS and Remote Sensing 

 

For many decades, the occurrence of groundwater has been studied using aerial photo 

interpretation and geophysical techniques, but computer-based analysis of remote sensing (RS) 

data and geographic information system (GIS) has rarely been done (Elewa and Qaddah, 2011). 

Using an integration of different research tools and techniques, such as RS, GIS, geostatistical-

based predictive models (e.g. ordinary least square, geographically weighted regression), and 

random forest machine learning technique, areas of potential untapped groundwater (IFLs) have 

been identified spatially for the first time in a coastal setting. Spatial representation of data used is 

critical to ground water-potential mapping, and GIS possesses the predictive and related analytical 

capabilities necessary to examine the complex problems of uncertainty. Still, there are 

uncertainties with each model regarding the minimum necessary validation levels that would 

ensure good potential mapping results (Elewa and Qaddah, 2011).  
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 Groundwater conditioning factors that affect groundwater storage can be retrieved via 

remote sensing. For instance, A. Y. Kwarteng et al., 2000 used aerial photographs, Landsat 

Thematic Mapper (TM) images, and Digital Elevation Models (DEM) for mapping paleo 

drainage patterns, large depressions, playas, and catchment areas. Madani and Niyazi (2015) 

defined lithology, rainfall, lineament density, drainage density, slope steepness, and land 

use/land cover hydrogeological parameters to relate to the groundwater. Elbeih (2015) 

considered lithology, stream network, lineament density, slope, drainage networks, and aquifer 

thickness for groundwater mapping in Egypt. For IFLs, Milewski et al., 2014, identified settings 

conducive for topographically induced and focus recharged IFL formations in hyper-arid 

environment in northern Kuwait using remote sensing. By understanding the formation factors 

that facilitated the development of three existing IFLs within the Raudhatain watershed, the 

authors identified field (e.g. high infiltration capacities, moderate precipitation (~120 mm/day), 

and the presence of saline groundwater) and satellite base observation (e.g. DEM, AMSR-E, 

TRMM, Landsat TM) to map a total of 40 drainage depression for the potential development of 

freshwater lenses, where ~20 potential lenses where identified in the Raudhatain watershed basin 

alone (Figure 2). Often, there is little to no surface water present in such environments 

(Kwarteng et al. 2000; Laattoe et al. 2017). Therefore, many arid environments such as the 

Middle East depend solely on groundwater and desalinization for its natural freshwater resources 

(AlAli, 2008). Unfortunately, most aquifers within the Arabian Peninsula are saline due to the 

presence of underlying evaporitic deposits (e.g., Rus Formation).  Therefore, freshwater in the 

subsurface, if present, is generally in the form of inland freshwater lenses (IFLs) (Kwarteng et 

al., 2000; Laattoe et al.,  2017; Milewski et al. 2014; Rotz and Milewski, 2019). Similar to 

Kuwait, other states in the Arabian Gulf (e.g. Saudi Arabia, Bahrain, Qatar, Oman, and the 
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United Arab Emirates) are facing freshwater resource problems (Chafetz, McIntosh and Rush, 

1988; Fallatah et al., 2019) and rely on the presence of inland freshwater lenses groundwater to 

supply those needs. Even though the development of the IFLs in the Arabian Peninsula is a result 

of focused recharge in a topographic depression and defers from the development of the IFL 

located in Florida, the use of the technique is possible. For instance, a study was done in Mehran 

Region, Iran to explore the countries’ groundwater potential zones. Water scarcity is the most 

limiting factor for the country’s most economic section, agriculture. As a result, a groundwater 

potential map (GPM) was produced using GIS and other machine learning algorithms (e.g. 

random Forest and Maximum Entropy). To train and test the algorithms, the authors used 

groundwater data with high potential yield values. Additionally, groundwater conditioning 

factors generated from remote sensing data (DEM, Landsat Enhanced Thematic Mapper Plus) 

were used as input parameters for each model (Rahmati, Pourghasemi and Melesse, 2016). 

Moreover, satellite remote sensing datasets are not always readily available in these areas to 

create such models to access occurrences, origin, and controlling factors, therefore, this research 

will focus around an area where satellite data and imagery are more readily available.  

 

2.2. Random Forest (RF) machine learning algorithm 

 

GIS and machine learning algorithms are two new technologies used for hydrological 

mapping (Sameen, Pradhan and Lee, 2019). The machine learning methods that researchers have 

used in recent years include boosted regression tree (BRT), support vector machine (SVM), 

artificial neural networks (ANN), decision trees (DT), classification and regression (CART), 

general linear model (GLM), and random forest (RF) algorithms across multi-disciplinary fields 
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(Naghibi, Ahmadi and Daneshi, 2017). Compared to the mentioned machine learning methods, RF 

success rates and predictive rates outperforms or perform just as well as other predictive algorithms 

in multiple studies.  RF can handle data from various measurement scales and makes no statistical 

assumptions, and is a useful tool for groundwater mapping, overcoming the limitation of artificial 

neural network (e.g. overfitting), assess important groundwater conditioning factor, and 

identifying the most important factors and reduce dimensionality (Rahmati, Pourghasemi and 

Melesse, 2015). The more the number of features, the more the chances of overfitting. Avoiding 

overfitting is a major motivation for performing dimensionality reduction. By reducing 

dimensionality, the features are not dependent on the data it was trained on and in turn results in 

good model performance on the data. The fewer features our training data has, the lesser 

assumptions our model makes.  

RF has been widely used for environmental (Rodriguez-Galiano et al., 2012), ecological 

modeling (Oliveira et al., 2012), and other disciplines. For groundwater mapping, RF is fairly new. 

RF can be used for both regression and classification tasks. RF, however, is better at classification 

than it is for regression. Significant improvements in classification accuracy have resulted from 

growing an ensemble of trees and letting them vote for the most popular class (Breiman, 2001). In 

the case of regression, it does not predict outside the range of the trained data and may overfit data 

that may be too noisy, and lastly, we have very little control over what the model does. Compared 

to the overall performance of other machine learning algorithms (e.g. Support Vector Machine, 

Artificial Neural Network Maximum entropy), RF is a combination of tree predictors such that 

each tree depends on the values of a random vector sampled independently and with the same 

distribution for all trees in the forest (Breiman, 2001).  
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2.3. Geophysical signatures in variable-density groundwater 

 

Electrical resistivity (ER) quantifies how strongly a material opposes the flow of an 

electric current. The resistance of a material depends on what the material is made up of the 

shape of the material. Resistance is quantified in the following way: one ohm of resistance 

allows a current (I) of one ampere to flow when one volt (V) of electromotive force is applied. 

Ohm’s law, equation (1), states that current is directly proportional to voltage and inversely 

proportional to resistance. Resistance not only depends on the material, but also the resistances 

of the resistor’s length, cross-sectional area, and the material fundamental properties, resistivity 

denoted by ρ, equation (2). High resistivity indicates that the current does not readily go through 

the matrix, whereas, low resistivity indicates current goes through the matrix easier. The use of 

Electrical resistivity is suitable for groundwater exploration because there is a direct link 

between electrical methods and rock properties (Archie, 1942).   

 

I = 
𝑉

𝑅
          Equation 1 

 

R = ρ 
𝐿

𝐴
      Equation 2 

 

In the subsurface, ER is controlled by the solid matrix of the soil and rock and the fluid 

contained in the pore space. Using Archie’s empirical equation, the relationship between resistivity 

and porosity can be achieved (Archie, 1942): 
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F = φ-m   Equation 3 

  

 

where φ, m, and F represents the porosity, cementation factor, and formation factor, respectively. 

The formation factor is the ratio between the resistivity of the saturated rock, ρr ,  and the 

resistivity of the pore fluid, ρf. In a carbonate aquifer, the electrical resistivity for a given 

porosity can vary depending on the cementation factor. The cementation factor m, is strongly 

dependent on the shape of the grains and pores, type of grains and pores, specific surface area, 

tortuosity, and anisotropy (Garing et al., 2014). The shape of grains and pores is a result of the 

degree of consolidation. The type of grains (lithological and mineralogical composition) can 

affect the surface conductance depending on whether specific clay mineral is present. Pore 

shapes can be intergranular, intercrystalline, or fractured. While the increase in fracturing 

decreases the value of m, an increase in surface area increases the value of m  (Salem and 

Chilingarian, 1999). Tortuosity which is also used to link resistivity to porosity is the flow path 

of the electric current. Tortuosity is defined as the ratio of the actual or effective length of a flow 

path to the length of a porous medium. High values of tortuosity correspond to a high 

cementation factor. Lastly, the physical properties in the horizontal and vertical direction 

contribute to the orientation and variation of grain and pore properties (Salem and Chilingarian, 

1999). Electrical current is conducted in porous media by means surface conductance and the 

ionic makeup of the pore fluid.  

 Water conducts electricity depending on the amount of total dissolved solids (TDS) 

present in water. TDS consists of inorganic and organic salts. Salts that dissolve in water break 

into positively and negatively charged ions; dissolved ions are conductors. Because dissolved 
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ions increase salinity and conductivity, water with high values of TDS generally has a low 

electrical resistivity.  

As a result of geoelectric investigation due to mineral matrix and pore fluid conductivity, 

the delineation of the freshwater lens (transition zone between fresh and saltwater) and lens 

thickness can be determined. Near-surface electrical resistivity has become increasingly popular 

over the last decade to map electrical properties to identify anomalies in the subsurface. 

Apparent resistivity is recorded through electrolytic conduction, where four metallic electrodes 

are planted into the ground and connected to a resistivity meter. The two outer electrodes A and 

B introduce current into the subsurface and the two inner electrodes M and N measure the 

potential difference (Raji, 2014). The apparent resistivity, equation 4, can then be calculated by 

the geometric factor times the electrode configuration and spacing. Because electrical resistivity 

is controlled by water content, conductivity of the fluid, presence of clay, porosity, permeability, 

and physical properties of the soil or rock particles, the geometry (e.g. width, length, thickness, 

transition zone) of these unique, untapped groundwater can be imaged. 

 

ρa =  
2𝜋∆𝑉

𝐼
 (

1
1

𝐴𝑀
−

1

𝐵𝑀
−

1

𝐴𝑁
+

1

𝐵𝑁

)   Equation 4 

 

 

The literature review presented here demonstrated numerous techniques and applications 

used in groundwater potential mapping. In the current study, RF and GIS models were used to 

examine the relationship between IFL formation factors, IFL occurrences and to predict IFL 

potentiality. The results of the current study show promise in groundwater potential mapping to 

further explore these unique bodies of water given their formation mechanism and occurrences.  
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Figure 1. The occurrence of global saline or brackish groundwater (TDS>1,000 mg/L), less than 

500-meters below ground level. Image source: Werner and Laattoe, 2016. 
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Figure 2. Topographically induced depressions identified in Kuwait. Primary depressions are 

suggestive areas of untapped groundwater within the Raudhatain watershed. 

Image source: Milewski et al., 2014. 
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CHAPTER 3 

STUDY SITE 

  

The state of Florida is the southeastern state of the United States separating the Atlantic 

Ocean and Gulf of Mexico waters, between 27.6648° N, 81.5158° W (Figure 3.). The state is a 

part of the major sub-region of the South Atlantic Gulf watershed and has 29 major watersheds. 

This research focuses on the only watershed within the state that has a known inland freshwater 

lens— the Middle St. John watershed. This watershed encompasses about 2,037 square miles of 

central Florida and includes the St. John River and confluence from the Ocklawaha River through 

Lake Harney.  

 

3.1. Geologic History 

 

Florida was formed about 530 million years ago by a combination of volcanic activity and 

marine sedimentation during the early Ordovician Period (Allen and Main, 2005). During this 

time, most of the world’s land was aggregated in the supercontinent Gondwana. When Florida was 

part of the supercontinent Pangea, Florida was situated between North and South America and 

Africa. The deep bedrock that underlies Florida was originally a part of Africa. Eventually, Florida 

rifted from Africa’s parent plate when the tectonic plate movement caused Pangea to split into 

Laurasia (North America, Europe, and parts of Asia) and Gondwana (South America, Africa, 

India, Australia, and Antarctica). Many of Florida’s modern topographic features and surficial 
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sediments were created or deposited during periods when the sea levels were high. As sea levels 

rose and fell, the calcium carbonate remains of the sea creatures and algae formed the sedimentary 

limestone bedrock. Today, the Florida Peninsula is composed of thick marine limestone and 

dolomite deposited during the Cretaceous (about 138 to 63 m.y. ago) and Tertiary (about 65 to 

2.58 m.y. ago) geological period (Phelps and Rohrer, 1987). Rock layer thicknesses are a result of 

the constant deposition of calcium carbonate (CaCO3) in a warm and shallow depositional 

environment. Marine organisms lived and died in shallow seas and their skeletal remains became 

concentrated, compacted, and later lithified into complex subsurface stratification of sedimentary 

rock formations. 

 

3.2. Land Relief 

 

 Generally young with low-lying plains, Florida’s topographic features were molded by 

running water, waves, ocean currents, winds, changes in sea level, and the wearing of limestone 

rocks by the process of dissolution. Dissolution potential for karst development in coastal 

carbonates derives partially from carbonic acid from atmospheric and soil carbon dioxide (CO2), 

and from mixing of freshwater and saltwater (Fratesi, 2013) over the continuous carbonate rock, 

thus leading to the karstification of the upper surface and landforms (e.g. sinkholes, caves).  The 

state’s maximum elevation is at 105 meters (Britton Hill) and much of south Florida is mostly flat, 

with only a few meters of relief and lying only a few meters above sea level (Hine, 2008).  
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3.3. Hydrogeology and Aquifers Properties 

 

Florida’s hydrogeological regions consist of a surficial aquifer system (SAS), an 

intermediate aquifer system (IAS), the Floridan aquifer system (FAS), and a lower confining unit. 

Overlying the FAS, the surficial aquifer contains the water table and the uppermost hydrogeologic 

unit of post-Miocene (5 Ma to recent) and Miocene (23 to 5 Ma) chronostratigraphic units. 

Throughout the majority of the area, the surficial aquifer is thin, composing terrace and alluvial 

sands, that may aid in the temporary storage for groundwater that later recharges the underlying 

FAS. The surficial aquifer is thickest in the Biscayne aquifer in southern Florida and the sand and 

gravel aquifer in the westernmost part of Florida’s panhandle. The thickness of the surficial aquifer 

ranges from 100-200 ft inland and exceeds 300 ft along the coastline (Reese and Wacker, 2009). 

The upper confining unit of the FAS is the intermediate layers. The general thickness of 

the intermediate layer is thinnest in northern and central Florida as shown in (Figure 4). 

Interbedded in central and southern Florida, within the intermediate layer there exists a highly 

fractured zone called the Miocene Hawthorn Formation. This highly fractured and permeable zone 

is underlain by a less-permeable carbonate zone named the Ocala Avon Park. Underlain by the 

Ocala Avon Park is a lower permeable confining to semi-confining evaporitic (e.g. carbonates, 

sulfates, chlorides) and non-evaporitic rocks. Evaporitic rocks (e.g. carbonates, sulfates, chloride) 

are layered sedimentary rocks that form from brines in areas where water is lost through the process 

of evaporation. The Ocala Avon Park is overlain by the uppermost permeable carbonates of the 

FAS which includes the Suwannee and Ocala Limestone, and parts of the Hawthorn Group. 

The Floridan aquifer system is the principal source of fresh water for agricultural, 

industrial, mining, commercial, and public supply in Florida (Williams and Kuniansky, 2016). 
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This aquifer system consists of low permeable limestone and dolomite beds of the Eocene (56 to 

33 Ma) to Oligocene age (33 to 23 Ma). It also stretches across parts of Alabama, Georgia, and 

South Carolina covering approximately 100,000 square miles and is largely composed of carbonate 

rocks (Williams and Kuniansky, 2016; Maupin and Barber, 2015). The FAS is subdivided into two 

aquifer units: the Upper Floridan aquifer system (UFAS) and the Lower Floridan aquifer system 

(LFAS). If present, the middle confining unit composes low permeable rocks. However, in some 

instance, units in the middle confining layer is semiconfing, very leaky, or have the same hydraulic 

properties above and below the aquifer system.  Limestone’s porosity and its susceptibility to be 

enhanced by dissolution enable the Floridan aquifer to hold water. 

The functionality and productivity of the FAS are dependent on its karstic features (e.g. 

sinkholes, springs). These karstic features, through the process of carbonate dissolution, create 

secondary porosity that is critical in controlling recharge and discharge (Tobin and Weary, 2004). 

The karst topography of northern and central Florida produces artesian springs, caves, and 

sinkholes. In areas where the aquifer system is unconfined or thinly confined, the dissolved rock 

increases transmissivity, whereas, in areas where the aquifer system is thickly confined the 

transmissivity is lower.  

 

3.4. Regional Climate 

 

The regional climate in central Florida is humid and subtropical, with cool, dry winters 

and warm, rainy summers (Willard et al., 2007). Florida is divided into two climatic regimes; 

tropical (south) and subtropical (north) and is among the wettest states in the U.S. with most 

areas receiving at least 50 inches of rain annually. Summer months are between June and 



 

21 

September and winter months are between October and May. The rainy season runs from May 1 

to late November. The average annual precipitation near the Orlando International Airport region 

for the period from 1981-2010 was 50.73 inches, with an annual mean temperature of 72.8°F 

(maximum temperature of 82.8 °F, minimum annual 62.89 °F) (Florida Climate Center: 

https://climatecenter.fsu.edu/products-services/data/1981-2010-normals/orlando). Hurricane 

season is from June to November, though September is the month during which they are most 

likely to occur. The average annual temperature ranges from 20 °C in the north to 25 °C in the 

south.  

 

3.5. Middle St. Johns River watershed 

 

There are numerous drainage basins with vast water networks within the state. These water 

networks are fed by the state’s porous limestone substructure, which stores large quantities of 

water. The Middle St. Johns River watershed (Figure 5), includes the St. Johns River and extends 

from the Econlockhatchee River in Osceola, Orange, and Seminole counties northward into Lake 

and Volusia counties. The St. Johns River flows from south to north for about 300 miles from its 

headwaters in marshes in St. Lucie County to the Atlantic Ocean in Jacksonville. There are nine 

major tributary watersheds in the basin, including the watersheds for Lakes Harney, Monroe, and 

George. These large water bodies are part of and include the main stem of the St. Johns River. 

According to the St. Johns River Water Management District (SJRWMD), the other tributary 

watersheds are, from south to north, the Econlockhatchee River, Lake Jesup, Deep Creek, Wekiva 

River, Lake Kerr, and Alexander Springs. 

https://climatecenter.fsu.edu/products-services/data/1981-2010-normals/orlando
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Within the Middle St. Johns watershed, in the northeastern part of Seminole County, in 

the town of Geneva (Figure 6), there is an inland freshwater lens in the upper Floridan aquifer 

overlaying brackish water (Panday, et al., 1993; Phelps and Rohrer, 1987; Barraclough, 1962; 

Tibbals, 1977; Laattoe et al., 2017) and used to supply a local population of ~5,000 inhabitant. 

The lens covers an area of 26 mi2 (56.98 km2) and is situated on a topographic high and exists in 

the phreatic aquifer. Sensitivity analysis from a density-dependent flow and transport analysis of 

the freshwater lens was done showing that the behavior of the IFL is significantly influenced by 

the discharges through the top of the upper Floridian, which also has a thin, leaky sandy clay 

confining unit with high vertical permeable which promotes the vertical recharge to the 

underlying aquifer (Panday et al., 1993). The land surface area surrounding Geneva with an 

altitude greater than 7.6 meters (25 feet) is the dominant recharge area (Panday, et al., 1993; 

Phelps and Rohrer, 1987); topographically low areas surrounds the recharge zones. A geological 

cross section of the study area can be seen in section 4.4 (Figure 19). The Geneva freshwater lens 

serves as a water supply for Geneva residents and farmers. 
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Figure 3. Geographical map of the state of Florida, USA. 
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Figure 4. Thickness range of the Intermediate Aquifer System (IAS) across the state of Florida. 
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Figure 5. Study site map. The Middle St. Johns watershed located in central Florida. 
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Figure 6. The areal extent of the Geneva lens located within the Middle St. Johns watershed, 

juxtapose Lake Jesup and Lake Harney. 
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CHAPTER 4 

RESEARCH METHODOLOGY 

 

4.1. Objectives 

 

The main objective of this study is to produce an inland freshwater lens potential map 

(IFLPM) within the Middle St. John watershed using two models. Then later, apply ERT 

geoelectrical inversion and forward model to simulate apparent resistivity of the freshwater-

saltwater interface. Eight thematic maps that contributed to the formation of the Geneva lens were 

integrated as input layers for IFLPM (Figure 7). Table 1 shows the weightage and score for the 

different thematic layers and their potentiality to IFL existence; weight value 10 indicates high 

potentiality.  A simple GIS-based model was created to recognize zones of high potentiality with 

these layers. Secondly, the “randomForest” package in R was used for RF modeling, to produce 

another IFLPM. Moreover, sensitivity analyses were used to identify parameters uncertainties on 

the produced IFLPMs within each model. The IFLPM for each model was classified based on the 

classification techniques in GIS (e.g. Natural Breaks, Quantile, Equal Interval, and Geometrical 

Interval) for potential zones. Previous studies done with groundwater potential mapping found that 

classification technique, quantile is a good classifier in groundwater potential mapping (Nampak, 

Pradhan and Manap, 2014; Naghibi and Pourghasemi, 2015; Razandi et al., 2015; Rahmati, 

Pourghasemi and Melesse, 2016). Therefore, this classification technique was used on all 

parameters, except for land use and land cover and recharge, where reclass field class_Name (e.g. 
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11-open water, 41-deciduous forest, etc.) and RECH_RANGE (e.g. discharge, low recharge, etc.) 

were used, respectively because the data values within the raster files were nominal and not ordinal 

like the other parameter files. Finally, geoelectric properties were modeled to predict the true 

resistivity of each water class using conceptual models, survey design, and noise levels (Table 2). 

The output of this research will provide a methodology to develop IFLPM that can be further 

explored and/or confirmed using this geophysical technique in the field. The confirmation of these 

untapped groundwaters, through ERT, can then be used for local uses, assessments, and protection. 
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Figure 7. Flow chart illustrating steps used to generate inland freshwater lenses potential zones. 

(LULC: land use and land cover) 
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Table 1. Weightage and score values for the thematic layers with inland freshwater lens 

development description in a coastal setting. 

IFL formation in coastal 

setting (WIOA) 

Class Weight Value* IFL development 

 

Recharge Zone 

Score 20 

Discharge 

Low 

Medium 

High 

1 

3 

7 

10 

Sustains 

groundwater 

resources 

development and 

management. 

Recharge varies 

spatiotemporally. 

Elevation (feet) 

Score 20 

< 8  

2-15 

24-27 

37 

1 

3 

7 

10 

GW recharges are 

congruent with 

topographically high 

lands. 

IAS thickness (feet) 

Score 20 

>154 

94-112 

26-43 

<15 

1 

3 

7 

10 

Thin confining layer 

can allow saltwater 

to extrude from FAS  

Precipitation (inches/year) 

Score 10 

<48 

50-51 

54-55 

>55 

1 

3 

7 

10 

The infiltration of 

water into the 

subsurface allows 

for recharge. 

Landuse/Landcover 

Score 10 

Developed, High 

Intensity (24) 

Pasture/Hay (81) 

Developed, Open 

Space (21) 

Woody Wetlands 

(90) 

1 

 

3 

 

7 

 

10 

Land must consist 

of minimal 

impervious surfaces 

to allow infiltration. 

Lithology 

Score 10 

Eocene 

Miocene 

Pliocene 

Holocene 

1 

3 

7 

10 

The type of rock 

units and degree of 

weathering are good 

aspects for 

groundwater 

storage.  

Total dissolved solid (mg/L) 

Score 5 

<44 

209-238 

344-398 

>727 

1 

3 

7 

10 

Salinity create 

buoyancy effect for 

IFL to exist. 

Transmissivity (ft2/day) 

Score 5 

<4,080.1-11,027.3 

16,946.0-20,569.0 

94,550.9-170,432.6 

>748,512.1-

243,767.6 

1 

3 

7 

10 

The amount of 

water than can be 

transmitted through 

a rock unit. 

 *Note: Weight Value Key: 1- low potential, 10- high potential 

potential 
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Table 2. Salinity zones and classes as it relates to total dissolved solids and electrical 

conductivities if the relationship is linear. Values sourced from (Williams and Kuniansky, 2019). 

 

Salinity Zone Salinity Class Total dissolved 

solids concentration 

(mg/L) 

Electrical 

conductivity 

(µS/cm) * 

Freshwater Fresh 0-1,000 < 700 

Brackish water Slightly brackish 

Brackish 

1,00-3,000 

3,000-10,000 

700 < EC < 2,000 

Transition zone Moderately saline 10,000-35,000 2,000 <EC <10,000 

Saline water Saline 35,000-100,000 25,000 <EC<45,000 

 

* Conversion factor: 1µS/cm = 10-4 S/m; 1 S/m = 1 ohm/m  
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4.2. Input Datasets and Pre-Processing 

 

1. Precipitation 

The main recharge mechanism to the Floridan aquifer is rainfall. On average, Florida 

receives 51 inches of rain per year, roughly 38 inches evaporates from water bodies and trees, thus 

on average, leaving about 13 inches to recharge the aquifer annually (SJRWMD).  High-resolution 

30-year average (1981-2010) precipitation data for the study area was retrieved from Parameter-

elevation Regressions on Independent Slope Model (PRISM) Climate Group. PRISM uses 

modeling techniques to interpolate between stations through time and space. Datasets retrieved 

were “Norm81m” with spatial resolution 4km. This data was processed and clipped to the study 

area. Precipitation for this study area over a 30-year average is 48 inches/year to 55 inches/year 

(Figure 8). 

2. Elevation 

Based on previous studies by Barraclough (1962), the land surface elevation is a key 

component to the freshwater lens in Geneva. In topographically lower areas, thicker clay layers 

impede water exchange between the surficial and Floridan aquifer systems. The raster image of 

the digital elevation model (DEM) was retrieved from Florida’s Geographic Data Library 

Documentation (FGDL) to derive high elevation points within the watershed using ArcGIS 10.2 

software. Elevation units are represented in feet. Elevation ranges from -13.7 feet to 36.8 feet 

within the study site (Figure 9). 
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3. TDS groundwater level 

One way to mitigate water quality within the aquifer is to monitor the total dissolved solids 

(TDS). Total Dissolved Solids (TDS) consist of inorganic and organic salts. As a result, TDS can 

be used as an indicator of saline groundwater, which here is necessary for the bouncy effect to 

develop a freshwater lens. The USGS observed minimum depth to brackish (1,000-10,000 ppm) 

to highly (>10,000 ppm) saline groundwater. Estimation variation in TDS concentration came 

from geophysical logs (TDEM), and water sampling. Salinity mapping includes freshwater, 

brackish water, a transition zone, saline water, and brine water zones as previously mentioned. For 

this study, brackish zones, transition zone, and saltwater zones for the estimated total dissolved 

solids concentration, milligram per liter for the top 50 feet of the aquifer system were considered. 

The data was retrieved from (Qi, and Harris 2017). Dataset is in the Albers Equal-Area Conic 

projection.  The TDS data collected from each well were placed in ArcGIS and interpolated across 

the study site using the Inverse Distance Weighting (IDW) interpolation in the spatial analyst 

toolbar. TDS ranged from 44.52 mg/L to 6,285.87 mg/L for the study area (Figure 10). 

4. Intermediate confining layer thickness 

Variable confinement of the hydrostratigraphic unit of the intermediate aquifer system was 

collected from the Florida Department of Environmental Protection Geospatial Open Data site. 

This grid was created from well core and cutting data, later interpolated using the kriging method 

across the study site. The dataset was brought straight into ArcGIS for further analysis. The 

intermediate confining layer ranged from 0 to 178 meters thick in the study area (Figure 11). 
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5. Recharge zones 

Recharge to and discharge from the FAS occur through a variety of pathways and the most 

dominant characteristic of the system controlling these processes is the degree of confinement 

(Williams and Kuniansky, 2015). Unconfined and thinly confined areas are where direct recharge 

from precipitation enters the system (Miller, 1999). The data used to identify recharge zones was 

taken from the St. Johns River Management District (SJRWMD) geospatial open data source. This 

data consists of recharge to discharge zones of the upper Floridan aquifer (Figure 12).  

6. Land Use and Land Cover (LULC) 

The LULC map of the study area was obtained from the National Land Cover Database 2011 

(NLCD2011). The NLCD uses Landsat imagery to categorize different land covers at 30m 

resolution. The data type is vector and formatted into a raster in Albers conical equal area 

projection (Figure 13). 

7. Lithology 

Lithology is considered as one of the most important indicators of hydrogeological features 

playing a fundamental role in both the porosity and permeability of aquifer materials (Rahmati, 

Pourghasemi and Melesse, 2016). The lithology map represents surficial and near-surface 

geology and was downloaded from the Florida Department of Environmental Protection (FDEP) 

geospatial open data portal. The study site was divided into 5 lithology units. In this study, in 

order of the most recent deposit, the lithology units were classified into Holocene (beach sand), 

Pleistocene/Holocene (clay or mud), Pliocene (sand), Miocene (sand), and Pliocene/Pleistocene 

(limestone) epoch (Figure 14). 

 

http://pubs.usgs.gov/pp/1807/
http://pubs.er.usgs.gov/publication/ha730A
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8.  Transmissivity  

The position of the freshwater-saltwater interface is governed by large differences in 

transmissivity between the Upper and Lower Floridan aquifer and the confining units (Kuniansky, 

Bellino, and Dixon 2012). Where the aquifer is unconfined or thinly confined, infiltrating water 

dissolves the rock and transmissivity tends to be relatively high. Where the aquifer is thickly 

confined, less dissolution occurs and transmissivity tends to be lower. Data were retrieved from 

Kuniansky, Bellino, and Dixon (2012) study and interpolated across the study site using the kriging 

method. Kriging is a statistical model that includes the relationship among measured points, 

providing some measure of the certainty. Transmissivity values range from 4,080.12 to 748,512 

ft3/day within the watershed (Figure 15). 
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               Figure 8. High-resolution 30-year average (1981-2010) precipitation data. 
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Figure 9. Digital elevation model (DEM) showing elevations in feet. 
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Figure 10. Interpolated total dissolved solids (TDS) concentration, milligrams per liter for the top 

50 feet of the Floridan aquifer system for the top 50 feet of the Floridan aquifer system. 
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Figure 11. Variable confinements of the hydrostratigraphic unit of the intermediate aquifer 

system. 
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Figure 12. Recharge zones classes to the upper Floridan aquifer. 
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Figure 13. National land cover database 2011 (NLCD2011) 
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Figure 14. Unit age for each geological feature. 

 



 

43 

 

Figure 15. Interpolated transmissivity based on interpolation of ~1500 aquifer test of the Upper 

Floridan Aquifer, in units of feet squared per day. 
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4.3. Description of models 

 

Model 1: WIOA GIS data-driven model  

Firstly, datasets were integrated into an Arc-GIS based interface to analyze the spatial 

relationships. The reclassification tool was used to extract and reassign old values within each 

raster file to new values. The new values were ranked from one to ten; one being of lowest 

importance to ten being higher importance for IFL formation conditions.   

After reclassification, the Weighted Index Overlay Analysis (WIOA) combined analysis 

of multi-class layers. Each parameter was overlaid and assigned a weight value ranging between 

0 and 100% in the spatial analyst tool. The weight values range because not all parameters have 

the same level of contribution toward groundwater potentiality. In this study, scoring with the 

following percentages 20, 20, 20, 10, 10, 10, 5, 5 were assigned to elevation, confining unit 

thickness, recharge, lithology, land use and land cover, precipitation, depth to saline groundwater, 

and transmissivity layers, respectively was used to develop the IFLPM. Each factor considered is 

assigned a weight depending on the formation mechanisms leading to the development of the 

Geneva lens in central Florida. Consideration of the relative importance between the parameters 

leads to better representation of the actual ground. To see if the weights assigned to each parameter 

had any effect on the model output, a WIOA sensitivity test was done weighting each parameter 

differently (Figure 16). For the first sensitivity test, Figure 16a represent the main model. Figure 

16b the following percentage 20, 20, 20, 8, 8, 8, 8, 8 were assigned to elevation, confining unit 

thickness, recharge, lithology, land use and land cover, precipitation, depth to saline groundwater, 

and transmissivity layers, respectively. Figure 16c equal weights were assigned to each parameter. 

In the present approach, the total weights of IFLPM were derived as the sum or product of the 
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weights assigned to the different layers according to their level of contribution. Finally, the IFLPM 

was mathematically calculated using the raster calculator. Each ranked pixel values were extracted 

to points, assigned latitude and longitude for each field ID, and clipped to each parameter using 

the extraction tool in the spatial analyst toolbar. 
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Figure 16. Weight Overlay Index Analysis sensitivity test. 

 

 

 

 

 

 

a) b) 

c) 
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GIS model validation using OLS and GWR 

The validation step is the most important process of modeling and without it; the 

groundwater potential models would have no scientific significance (Chang-Jo and Fabbri, 2003). 

Several studies have explored uncertainty within a GIS-based data-driven model.  Some studies 

have even found that the statistical methods used as well as the differences in data sources could 

lead to uncertainties within this model (Heikkinen et al., 2006). Ordinary least square (OLS) and 

geographically weighted regression (GWR) were performed on the IFL potentiality inventory map 

to assess the model’s ability to predict where IFLs are located and the sensitivity of each IFL 

formation factor.   

Ordinary least squares (OLS) regression was used to evaluate the performance of each 

inland freshwater lenses postulated location and verify that the model does not violate common 

regression model assumptions through diagnostic statistics assessments. OLS builds a global linear 

regression model for the entire study area to measure the overall fit of the data and produce 

predictions for a dependent variable (e.g. IFL ranks) based on relationships to assigned 

independent variables (e.g. recharge, elevation, etc.). OLS assumes variable relationships are 

constant in space, which prohibits regression coefficients to vary over space.  

Also, due to the spatial heterogeneity of IFL ranks and individual IFL formation factor, a 

local spatial statistics technique that allows the regression coefficient to vary, such as GWR, would 

provide a more direct method of testing hypotheses that are the subject of spatially variation. GWR 

computes a unique regression equation for each point in a dataset using kernel type, bandwidth 

method, and optional weighting factors for individual features. 

 

https://www.sciencedirect.com/science/article/pii/S0341816215301326#bb0060
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Model 2: Random Forest (RF) Machine Learning Algorithm Model 

 There is no known database containing IFL in Florida’s coast, except the Geneva lens. 

Data values from the GIS-model of IFLs’ presumptive locations were used to create a data frame 

of IFL locations and formation factors, to train and test random forest model to predict and classify 

IFL locations by ranks within the St. Middle Johns watershed. The outcome of the RF predictive 

model was compared to 30% of GIS initial model classification to further assess the model’s ability 

to predict IFLs within the St. Middle Johns watershed and possibly elsewhere.  

Random forest (RF) is a nonparametric technique (Breiman, 2001) that was developed as 

an extension of classification and regression trees (CART) and generates many classification trees 

(Breiman et al., 1984) to improve the prediction performance of the model. This algorithm 

constructs multiple trees based on random bootstrapped samples of the training dataset (e.g. 70%) 

and runs random binary trees that implement a subset of the observations over the bootstrapping 

approach, of the initial dataset a random choice of the training data was selected and implement to 

create the model. RF predicts the importance of a variable by looking at how much the error of 

prediction increases when out of bag data for the variables is permuted while all others are left 

fixed (Naghibi, Ahmadi and Daneshi, 2017). In general, the more trees in the forest, the more 

robust the decision tree, the higher the accuracy. This random forest model assesses IFL potential 

by IFL ranks (1-6); high ranking IFLs (e.g. 6) are strong indicators for IFL potential mapping. This 

study was conducted with an inventory of 662 IFL ranks generated by the GIS IFLPM randomly 

divided and split into 70% (e.g. 466) for training and 30% (e.g. 196) for testing and 8 explanatory 

groundwater conditioning factors (Figure 16).  

After splitting the dataset into training and testing datasets, it was necessary to define two 

parameters: the number of variables/factors to be used in the tree building process (mtry) and the 

https://www.sciencedirect.com/science/article/pii/S0341816215301326#bb0050
https://www.sciencedirect.com/science/article/pii/S0341816215301326#bb0055


 

49 

number of trees (ntrees). To minimize the generalization error, an internal RF function Tune RF was 

used to best optimized mtry and ntrees before training the model. By default the model is set to create 

500 trees, to see if 500 was optimal for classification, as well as the frequency of IFL 

misclassification at each tree, an error rate for IFLs potential was plotted using the ggplot2 function 

within R. Each tree is generated by bootstrap samples and uses the out-of-bag (OOB) error to make 

validations. The OOB error is an unbiased estimate of the generalized error that the model made. 

With the OOB error, there are many advantages (e.g. no overfitting, low bias and variance, high 

predictive performance, low correlations among trees) (Prasad, Iverson and Liaw, 2006). 

After running the model, parameters sensitive to IFL formation were identified. Parameter 

importance was measured on the mean decrease in Gini coefficient plot. Also, the OOB error rate 

from low to high potential zones classification was calculated from the training dataset. RF aims 

to identify the suitable model to analyze the relationship between independent variables and a 

dependent variable in the calibration phase (i.e. model building) to determine the weight value for 

each factor. In this study, IFL inventory of training dataset (i.e. 70% of the dataset), and 8 IFL 

conditioning factors were used as the dependent variables and independent variables, respectively. 
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Figure 17. Random forest (RF) model training (70%-red) and validating (30%-green) data points. 

IFL formation factors are assigned to each data point. 
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Random Forest Model Validation 

Model validation was accomplished using the receiver operating characteristics (ROC) and 

area under the curve (AUC) to evaluate the model’s efficiency. The receiver operating 

characteristic (ROC) curve has been used in many studies to evaluate the efficiency the model has 

on groundwater potential mapping. The ROC shows the performance of a classification model at 

all classification threshold.  It is created by plotting the true positive, or sensitivity, rates against 

the false positive, or 1- specificity, rate. The true positive rate indicates what proportion of IFL 

rankings were correctly classified. The false-positive rate tells us when an IFL ranks correctly but 

get rejected by the model. The sensitivity calculated can be described by equation 5 and equation 

6. ROC is a scientific technique that describes the efficiency of probabilistic and deterministic 

detection and forecast system (Swets, 1988). The area under the ROC curve (AUC) quantifies the 

uncertainty of the model, accounting for detected biases associated with those estimations. The 

uncertainty of the RF model has been investigated using AUC. To examine the efficiency and 

reliability of the IFLPM, the success and predictive rate curves were calculated. The quantitative-

qualitative relationship between the AUC and prediction accuracy can be classified as follows: 

50–60% (poor), 60–70% (average), 70–80% (good), 80–90% (very good), and 90–100% 

(excellent) Yesilnacar (2005).  
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True Positive Rate/Sensitivity = 
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
     Equation 5 

  

 

False Positive Rate/(1-Specificity) = 
𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
  Equation 6 

 

4.4. Electrical Resistivity Tomography (ERT): Variable Density Forward Modeling  

 

The final step to this research is to confirm the presence of these high ranking IFLs using 

subsurface imaging. This technique would be utilized in the field to verify high IFL potentiality 

based on the model predictions. For this thesis, what drives electrical resistivity signatures and a 

modeled cross section geoelectric forward and inverse modeling to derive the subsurface true 

apparent resistivity to delineate freshwater-saltwater interface is demonstrated. Data values 

retrieved from the literature are used to create a forward model to delineate freshwater-saltwater 

boundaries. Electrical resistivity quantifies how strongly a material opposes the flow of electric 

current. For example, saltwater will be less resistive (more conductive) to electrical flow because 

it contains more ions than more resistive (less conductive) freshwater. To be able to see the contrast 

in electrical properties between freshwater and saltwater, software for geoelectrical modeling, 

ResIPy, was used to image the subsurface (Blanchy et al., 2020). The software incorporates codes 

from R2 (Binley, 2019) to make importing, filtering, and error modeling possible for the 

geoelectrical dataset Pre-modeling flow chart can be seen in Figure 17.  
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4.4.1. Forward model and inversion model survey design 

A modeling study was carried out to determine the optimum electrode spacings and 

configurations (e.g. Wenner and dipole-dipole) for resolving freshwater lenses. By solving the 

forward problem, we go from a conceptual model to the true resistivity, generating data on 

apparent resistivities. Apparent resistivity refers to the value determined by the field measurements 

of potential difference, multiplied by the geometric factor, which depends on the electrode 

configuration. The forward model takes a synthetic model and generates theoretical data. 

Theoretical data can be represented as resistances or apparent resistivity. Inversion modeling takes 

the measured apparent resistivity and tries to find the true resistivity of the subsurface. The Geneva 

lens substructure, Figure 19, was modeled to generate synthetic measures from the electrode 

spacing and the type of configuration. Data derived from the forward model was used to develop 

the inversion model. Here, the inversion model does a comparative analysis between known 

models starting with the assumption that the earth is homogeneous. I used the forward model to 

generate the type of data that would be measured in the field.  

 In carrying out the modeling it was assumed that the geology is uniform, i.e., the matrix 

material is homogenous, has a high porosity, and the only variation is in the nature of the pore 

fluids. The solution to forward modeling is found through discretization, the process of assigning 

each cell on a grid spatial coordinates and values of conductivity or resistivity. Every survey must 

be planned accordingly before going into the fields. Geophysical methods locate boundaries with 

contrast in physical properties. It is important to note which method yields an anomaly and/or give 

a geophysical signature response. Two electrode configurations (dipole-dipole and Wenner) were 

used in the modeling. Spatial resolution and depth of investigation are determined by electrode 
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spacings and the length of the transect line. Input features were entered into the graphical user 

interface (GUI) through a series of steps: 

a.   Select 2D, forward model in the importing tab. 

b. Determine electrode spacings (e.g. 50 electrodes, 5-meter spacings) 

c. Define a mesh (e.g. unstructured triangular or structured quadrilateral). 

Quadrilateral mesh is good for condition with infinite boundaries. Triangular 

meshes are for more complicated geometry (Blanchy et al., 2020). Because of its 

versatility, for this study the triangular mesh was chosen to infer water properties. 

d. Assign resistivity values for each elemental shape based on values discussed in 

the literature. 

e. Select configuration: Wenner (e.g. a=5) and dipole-dipole (e.g. a=5, n=8; 40, etc). 

f. Generate synthetic data predicted by the model 

g. Add noise to simulate the natural settings of an urban area (e.g. 5%). There are 

various sources of noise ranging from man-made (e.g. electrical cables, pipes, 

drains, etc.) to natural sources (e.g. wind, rain, etc.) (Reynolds, 1997). 

h. Invert the data and interpret the model. 
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Figure 18. Pre-modeling workflow done within ResIPy software. 

Image source: Day-Lewis et al., 2017. 
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B’ 

Figure 19. Geological cross section of the study area along line B to B’. 
Image source: Phelps & Rohrer, 1987 
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CHAPTER 5 

RESULTS AND DISCUSSION 

 

5.1. WIOA GIS data-driven model 

 

The GIS model classifies Geneva IFL as an area with post-Miocene surficial sediments. In 

the center of the recharge zone, the surface elevation is 24 feet and varies spatially throughout the 

area. The confining unit is thinnest in the center of the lens. The LULC consists predominantly of 

woody wetlands, pasture/hay, evergreen forest, and developed areas where impervious surfaces 

account for less than 20% of the total land cover. The 30-year mean precipitation is 50 inches/year. 

Transmissivity ranges from 4080.12 - 22,733.5 ft2/day; lower transmissivity is in the center of the 

lens and increases towards the outer perimeter of the lens. The initial model ranks and recognizes 

the Geneva lens as a moderate potential zone (rank = 4). The lower classification into moderate 

instead of high IFL potentiality zone could be a result of how each layer was weighted in the 

WIOA. The determination of the weights for each class is an important part of the integrated 

analysis, yet there is no standard scale for a simple weighted overlay. Relative importance between 

the parameters leads to a better representation of the ground surfaces (Samson and Elangovan, 

2015). 

The GIS-data driven model has a ranking system from 1-6. For this study, rankings are as 

follows: ranking 1-2 are classified as low potential zones, 3-4 moderate zones, and 5-6 high 

potential zones. Of the 662 ranked locations, 32 areas were classified as low potential zones 
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(green to yellow), 449 considered moderate potential zones (orange to brown), and the remaining 

181 is classified as high potential zones (white). Visually, the highest ranking IFL zones are 

clustered in the southern part of the study area (Figure 20). A global linear regression, OLS, and 

a local linear regression, GWR models were used to analyze the spatial patterns of IFL 

potentiality.  

OLS and GWR IFLPM geostatistical models were assessed for overall goodness of fit 

between observed and predicted using the adjusted coefficient of determination (adjusted R2). OLS 

accounts for 47% IFLPM variability, whereas 58% variability was explained by GWR (Table 3). 

The Akaike information criterion (AICc) that helps in comparing the difference in regression 

models are 1,396 for OLS and 2,156 for GWR models. Even though the linear regression on the 

explanatory variable explains close to 60% of the variation in the dependent variable within the 

GWR model, the lower AICc is preferred as a means of comparing models. Considering all the 

IFL rankings, the OLS model shows a significantly clustered distribution pattern (p < 0.00, z = 

10.03). The diagnostic statistics showed that there was no redundancy among explanatory 

variables (VIF < 7.5), the relationship modeled are not consistent (Koenker (BP): p-value  < 0.01)), 

and lastly, the model predictions are biased and the residuals are not normally distributed (Jarque-

Bera Statistic: p-value < 0.01). 

  Although both models are visually represented, for this study, the OLS model is considered 

the better model mapped to compare the observed and predicted IFL potential zone. Within this 

model elevation, the IAS thickness, precipitation, and lithology exhibited statistically significant 

(p value < .01) for IFL formation within the watershed, followed by land use and land cover, 

recharge, salinity, and transmissivity. In order of parameter importance listed above, the parameter 

weights in the WIOA were 20, 20, 10, 10, 10, 20, 5, 5. Thereby, rejecting the null hypothesis that 
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there is no difference in IFL formation factor to predict IFL potentiality. P-values less than .01 

means that there is less than a 1 percent chance of seeing these results (or more extreme results), 

in the world where the null hypothesis is true.  

The comparison between observed GIS and predicted OLS and GWR rankings are present 

in Figures 21-24. The OLS geostatistical prediction, Figure 21, identified fewer high potential 

zones in the south and identifies the north of the watershed mostly as a low potential zone. The 

GWR predictions, Figure 23, highlight similar high and medium potential zones throughout the 

watershed. The model differs in the center where low potentials are inferred as more moderate 

potential zones. Overall, the slope and y-intercept of both models presents slight over predictions 

of observed IFL rankings (m= 0.5188, b = 1.86) and (m= 0.5571, b= 1.80) for OLS and GWR, 

respectively. The coefficient of determination describes a weak relationship between observed and 

predicted for OLS (R2 = 0.42) and GWR (R2 = 0.46).  
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Figure 20. GIS-data driven model output for IFL potential zones within the Middle St. Johns 

watershed. Areas in green marks areas for low, orange for moderate, and pink for high potential 

zones. 
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Figure 21. Left to right: GIS model observation and OLS geostatistical predictions. 

 

 

Figure 22. Relationship between GIS model observations and OLS geostatistical predictions. 
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Figure 23. Left to right: GIS model observations and GWR geostatistical predictions. 

 

Figure 24. Relationship between GIS model observation and GWR geostatistical prediction. 
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Table 3. Result summary of the OLS and GWR models. The results from the IFL potential zone 

with the lowest Akaike Information Criterion (AICc) were used to produce the predictive maps. 

 IFLPM GIS model 

OLS Adjusted R2 0.47 

OLS AICC 1396.50 

GWR Adjusted R2 0.58 

GWR AICC 2156.72 

 

Table 4. OLS independent variable p-value results from the IFL potential map datasets. 

Explanatory variables p-value GIS model VIF 

Elevation 0.00* 2.53 

IAS confining layer 

thickness 

0.00* 2.25 

Land Use and Land 

Cover 

0.16 1.18 

Salinity 0.32 1.13 

Precipitation 0.00* 1.49 

Transmissivity 0.67 2.04 

Lithology 0.00* 1.04 

Recharge 0.21 2.24 

*An asterisk next to a number indicates a statistically significant p-value (p < 0.01) 
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5.2. Random Forest model 

 

As described by Breiman (2001), the out-of-bag (OOB) rate estimates the general error 

depending on the number of trees. As seen in Figure 25, the OOB error is a function of trees and 

reduces as the number of trees are added to the random forest algorithm. The red line shows the 

error rate when misclassifying low potential zones; gold and green masks moderate potential 

zones; blue and purple for high potential zone misclassification; pink shows the overall OOB error 

rate. Based on this analysis, OOB equal to .2124, mtry and ntree were obtained 3 and 1000, 

respectively. We also see that with this model, the error rates stabilize and can be truncated at 750 

trees for all IFL potential classification.  

OOB estimate of the error of 21% means that 79% of the OOB samples were correctly 

classified by the random forest. The confusion matrix shows how the random forest classified IFL 

ranking and the error estimates made with each wrong prediction using the training dataset. Of the 

466 trained data, 11/14 ranking low potential zones were correctly classified, 270/340 moderate 

potential zones were correctly classified, and 86/112 high potential zone were correctly classified. 

The model was validated using the 30% testing dataset; 43/52 were correctly classified as high 

potential zones, 8/11 for low and 128/135 were classified correctly for moderate potential zone. 

 Figure 26 shows the formation factors by importance. As depicted, some categorial layers 

were strong and others were weak. The most influencing conditioning factors on IFL potentiality 

within the Middle St. Johns watershed were estimated to be confining layer thickness, recharge, 

elevation, and precipitation. The other variable in decreasing order of importance is land use and 

land cover, lithology, transmissivity, and salinity. The mean decrease in accuracy for each 

parameter is as follows: 85.95, 85.56, 72.29, 44.14, 37.06, 35.75, 36.44, 28.68 in order of 
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parameter importance. The parameter weights in the WIOA were 20, 20, 20, 10, 10, 10, 5, 5 in 

order of decreasing order of importance. This suggest there might be a link between IFL important 

formation mechanism and how each parameter was weighted in the model. 

To examine the efficiency and reliability of the IFLPM using random forest, both the 

success-rate and prediction-rate curves were calculated. The success-rate curve uses the training 

dataset to determine how well the resulting IFLPM has classified its ranking. The predictive-rate 

uses the validated IFLPM dataset to determine how well the model and formation factor to forecast 

IFL development (Rahmati, Pourghasemi and Melesse, 2016). Figure 27 shows the success-rate 

curve and the predictive-rate. 

For quantitative comparison, the area under the prediction-rate curve was considered. As 

shown in Figure 27b, the AUC for the prediction-rate of the IFLPM produced by RF was 98.1%. 

Based on the classification described by Yesilnacar (2005), (90-100%) showed very good accuracy 

in predicting IFL potential. The results from the RF model can be seen in Figure 28-29. The RF 

model compared to the initial GIS-model shows similar IFL potentiality ranking throughout the 

watershed, except in the south and southwestern part of the watershed where IFL rankings are 

slightly different. Although there are some over predictions in the model (m= 0.8438, b= 0.59) the 

coefficient of determination describes a strong relationship between observed and predicted (R2 = 

0.77).  
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Figure 25. Optimization number of trees bases on OOB estimates of the error rate in the RF 

model. 
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Figure 26. Variable importance derived from the RF model. 
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(a) 

 

(b) 

Figure 27. ROC curve: (a) successive rate (b) predictive rate for RF 

model. 



 

69 

  

Figure 28. Inland freshwater lens potential map produced by Random Forest model using 30% 

testing dataset to make predictions. 

 

Figure 29. Relationship between GIS model observation and machine learning algorithm, RF 

predictions. 

y = 0.8438x + 0.5884

R² = 0.7728

0

1

2

3

4

5

6

7

0 2 4 6 8

R
an

d
o
m

 F
o

re
st

  
p

re
d

ic
ti

o
n

s

GIS model observations

RF predictions

Linear (RF predictions)



 

70 

5.3. Electrical Resistivity 

 

Simple ERT inversion tests were carried out for the four water class boundary layers that 

were defined within the ERT forward model. These layers are freshwater, brackish water, 

moderately saline (transitional zone), and saline water. Region 1 is the saline water, region 2 is 

freshwater, region 3 is brackish water, and region 4 is the transitional zone (Figure 30). Model 

resistivities of 0.29 Ω-m, 14.29 Ω-m, 5 Ω-m, and 1 Ω-m, were assigned to regions 1, 2, 3, and 4, 

respectively (Figure 31). The transect line extends to 250 meters, and the depth of investigation 

for dipole-dipole is 50 meters, whereas the depth of investigation for Wenner is 6 meters below 

the surface. The difference in maximum depth was controlled by the spacings used for each 

electrode configuration.  In real situations, the resistivity is determined by different lithologies and 

geological structures. As noted earlier, it was assumed for this study that the geology of the 

subsurface was uniform, i.e., the matrix material was homogeneous, and the only variation was in 

the nature of the pore fluid. Apparent resistivity is controlled in part by the electrode configuration 

(dipole-dipole and Wenner). Also, another important thing to consider concerning the result and 

the variability in apparent resistivity is the noise recorded by the instrument that alters the quality 

of the data. The data presented is at a 5% noise level, accounting for the fact that this water class 

is in an urban area. The results of the inversion can be seen in Figure 32. Freshwater (yellow), is 

the more resistive material, and resistivity decreases across the water classes, reaching its lowest 

value within the saline class (purple). The transition zone is distinguishable in the inverted data at 

50-meter depth. Similar results are displayed for Wenner, however, the water classes are stretched 

to better resolve horizontal features. For the Wenner array results, only one value of electrode 

spacing (5 meters) was used, therefore, variations in depth could not be resolved. Moreover, larger 

values of spacing would allow greater depths of penetration. Scaled to 100-meter length (25 
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electrodes, a = 4), a partial area of the Geneva lens was inverted. The inversion model can be seen 

in Figure 33. Resistivity values of 20 Ω-m, 10 Ω-m, and 1 Ω-m were assigned to the surficial sandy 

clay deposit, freshwater lens, and saltwater, respectively. Resistivity values were adopted from 

(Febriani et al., 2019) and assigned to the 3 layer model. The unsaturated zone was not inferred 

into the model only the saturated zone was inferred in the model.  
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Figure 30. Water class boundaries defined within the geoelectric model. Unsaturated zone not 

included (water table very close to the surface). 
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Figure 31. Modeled resistivity values assigned to water classes as they relate to a one-

dimensional and homogenous Earth. The top image shows the model used for the dipole-dipole 

array and the bottom image shows the model used for the Wenner array. 
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Figure 32. Inverted true resistivity values for water classes for dipole-dipole (top) and Wenner 

array (bottom). 
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Figure 33. Wenner configuration on part of the Geneva lens (model is not drawn to scale). 
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5.4. Future work 

 

From the results, the higher weighted parameters were identified by the model as the most 

contributing factor to IFL development within a coastal setting. Future work should be done to 

evaluate if the model would still identify these same parameters as predominant if equal weights 

were assigned. 

Regarding geophysical modeling, more values of n for the dipole-dipole configuration 

should be included in the model to resolve both depth and lateral variation. The goal would be to 

determine the minimum thickness that can be resolved over various depth range. Due to the 

complexity and variability of pore networks, carbonate rocks of similar porosity may display a 

wide range of electrical resistivity. Therefore, it’s suggested to assign different resistivity values 

for the different boundary layer using existing literature. Lastly, additional work should be 

conducted to determine the better model and experimental design to capture the Geneva lens and 

a high IFL potentiality thickness in the field.  
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CHAPTER 6 

CONCLUSION 

 

Over the past 100 years, global water demand has increased by 600%, and expect to 

increase another 20-30% by 2050 (Boretti and Rosa, 2019). To address regions with water-

related sustainability problems one of the key elements is to characterize and quantify renewable 

water resources for better water budget management. Freshwater development above brackish or 

saline groundwater is a valuable resource that can meet current and future water demands. 

Groundwater potentiality mapping is an area of research that has seen a growing interest over the 

past decades. With the recent increasing interest in water resources, survey projects relating to 

groundwater problems must be carried out. For the first time, this research mapped groundwater 

potential in the form of IFL potentiality or occurrences within a complex coastal aquifer system, 

determined the most important settings conducive for IFL development, and demonstrated 

geophysical capabilities to confirm and quantify the amount of water available for local use. 

Various approaches have been adopted for this research that has been used by numerous 

researchers in groundwater potential mapping and geophysical data acquisition. This thesis 

integrated a GIS-based model and machine learning random forest for inland freshwater lens 

potential mapping (IFLPM) within the Middle St. Johns watershed, Seminole County, Florida. 

To produce IFLPM, the first step was the selection and preparation of IFL conditioning factor 

data sets (e.g. recharge zones, elevation, IAS thickness, precipitation, land use and land cover, 

lithology, total dissolved solids, transmissivity) that affects IFL potential and the formation of an 
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existing IFL within the same watershed. Then, the IFL data were randomly split into a training 

dataset 70% (e.g. 466) for training the model the remaining 30% (e.g. 196) was used for 

validating purposes. Using the mentioned conditioning factors, IFLPM was analyzed using GIS-

predictive regression models (OLS and GWR) and RF model. All results were plotted in the 

GIS-environment. From the initial GIS observations recollected from remote sensing data, 

predictive models OLS, GWR, and RF identified the highest potential zone for IFL potential is in 

the southern part of the watershed. The sensitivity analysis identified by the OLS model is 

elevation, IAS thickness, precipitation, and lithology as statistically significant, whereas, the RF 

model identified IAS thickness, recharge zones, elevation, and salinity. For RF, percent relative 

to the decrease of AUC values are 65.47, 54.12, 56.24, 41.52, respectively. It is shown that the 

RF model showed better predictive performance than both OLS and GWR models. Although 

there were no redundancy among explanatory variables in both models, the models exhibit weak 

relationships between observed and predicted rankings, whereas RF, a nonparametric test, 

showed a strong correlation. Additionally, RF is easy to code and compute. To run a success RF 

model, it is important to first identify the two parameters (e.g. ntree and mtry) for model 

optimization. 

 The results of this current study to determine how potential and susceptible groundwater 

mapping in conjunction with a minimally invasive technique can be of value to water resource 

managers to meet current and future water demands. Postulate untapped groundwater given certain 

hydrogeological parameters to promote stability and growth through localized water resources can 

be done using applied science. Additionally, sensing water remotely, cuts down the cost it takes to 

drill wells in order locate groundwater. Understanding favorable conditions for inland freshwater 

lens development is vital for all communities worldwide, especially in areas where the 
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groundwater is or to ever become saline. Insights gained from this research can show applied 

science being used to postulate untapped groundwater given certain hydrogeological parameters 

to promote stability and growth through localized water resources.  
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